J Colloid Interface Sci
February 2024
Owing to their quantum size, edge effects, and abundant surface functional groups, carbon dots (CDs) have attracted significant attention. In this study, chitin-derived carbon dots (CT-CDs) were prepared and used to synthesize MoS/CT-CDs. The abundant functional groups on the surface of the CT-CDs facilitated the orderly arrangement of MoS nanosheets, resulting in a hydrangea-like structure.
View Article and Find Full Text PDFGate-based quantum computation has been extensively investigated using quantum circuits based on qubits. In many cases, such qubits are actually made out of multilevel systems but with only two states being used for computational purpose. While such a strategy has the advantage of being in line with the common binary logic, it in some sense wastes the ready-for-use resources in the large Hilbert space of these intrinsic multidimensional systems.
View Article and Find Full Text PDFQuantum emulators, owing to their large degree of tunability and control, allow the observation of fine aspects of closed quantum many-body systems, as either the regime where thermalization takes place or when it is halted by the presence of disorder. The latter, dubbed many-body localization (MBL) phenomenon, describes the nonergodic behavior that is dynamically identified by the preservation of local information and slow entanglement growth. Here, we provide a precise observation of this same phenomenology in the case where the quenched on-site energy landscape is not disordered, but rather linearly varied, emulating the Stark MBL.
View Article and Find Full Text PDFWe report the first observation of simultaneous excitation of two noninteracting atoms by a pair of time-frequency correlated photons in a superconducting circuit. The strong coupling regime of this process enables the synthesis of a three-body interaction Hamiltonian, which allows the generation of the tripartite Greenberger-Horne-Zeilinger state in a single step with a fidelity as high as 0.95.
View Article and Find Full Text PDFNonequilibrium quantum many-body systems, which are difficult to study via classical computation, have attracted wide interest. Quantum simulation can provide insights into these problems. Here, using a programmable quantum simulator with 16 all-to-all connected superconducting qubits, we investigate the dynamical phase transition in the Lipkin-Meshkov-Glick model with a quenched transverse field.
View Article and Find Full Text PDFSuperradiance and subradiance concerning enhanced and inhibited collective radiation of an ensemble of atoms have been a central topic in quantum optics. However, precise generation and control of these states remain challenging. Here we deterministically generate up to 10-qubit superradiant and 8-qubit subradiant states, each containing a single excitation, in a superconducting quantum circuit with multiple qubits interconnected by a cavity resonator.
View Article and Find Full Text PDFMultipartite entangled states are crucial for numerous applications in quantum information science. However, the generation and verification of multipartite entanglement on fully controllable and scalable quantum platforms remains an outstanding challenge. We report the deterministic generation of an 18-qubit Greenberger-Horne-Zeilinger (GHZ) state and multicomponent atomic Schrödinger cat states of up to 20 qubits on a quantum processor, which features 20 superconducting qubits, also referred to as artificial atoms, interconnected by a bus resonator.
View Article and Find Full Text PDFA central task towards building a practical quantum computer is to protect individual qubits from decoherence while retaining the ability to perform high-fidelity entangling gates involving arbitrary two qubits. Here we propose and demonstrate a dephasing-insensitive procedure for storing and processing quantum information in an all-to-all connected superconducting circuit involving multiple frequency-tunable qubits, each of which can be controllably coupled to any other through a central bus resonator. Although it is generally believed that the extra frequency tunability enhances the control freedom but induces more dephasing impact for superconducting qubits, our results show that any individual qubit can be dynamically decoupled from dephasing noise by applying a weak continuous and resonant driving field whose phase is reversed in the middle of the pulse.
View Article and Find Full Text PDFAnyons are quasiparticles occurring in two dimensions, whose topological properties are believed to be robust against local perturbations and may hold promise for fault tolerant quantum computing. Here we present an experiment of demonstrating the path independent nature of anyonic braiding statistics with a superconducting quantum circuit, which represents a 7-qubit version of the toric code model. We dynamically create the ground state of the model, achieving a state fidelity of 0.
View Article and Find Full Text PDFPhys Rev Lett
February 2018
The law of statistical physics dictates that generic closed quantum many-body systems initialized in nonequilibrium will thermalize under their own dynamics. However, the emergence of many-body localization (MBL) owing to the interplay between interaction and disorder, which is in stark contrast to Anderson localization, which only addresses noninteracting particles in the presence of disorder, greatly challenges this concept, because it prevents the systems from evolving to the ergodic thermalized state. One critical evidence of MBL is the long-time logarithmic growth of entanglement entropy, and a direct observation of it is still elusive due to the experimental challenges in multiqubit single-shot measurement and quantum state tomography.
View Article and Find Full Text PDFHere we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668±0.
View Article and Find Full Text PDFGeometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator.
View Article and Find Full Text PDFSuperconducting quantum circuits are a promising candidate for building scalable quantum computers. Here, we use a four-qubit superconducting quantum processor to solve a two-dimensional system of linear equations based on a quantum algorithm proposed by Harrow, Hassidim, and Lloyd [Phys. Rev.
View Article and Find Full Text PDFLung cancer is the most common malignancy and exhibits significant morbidity and mortality worldwide. Among all lung cancer subtypes, non-small-cell lung cancer (NSCLC) accounts for the majority of all lung cancer cases. Although there have been intensive investigations on the underlying mechanism of NSCLC development and progression, the exact molecular basis is not well understood.
View Article and Find Full Text PDFJ Environ Sci (China)
June 2013
Diphenylarsinic acid (DPAA) is formed during the leakage of aromatic arsenic chemical weapons in soils, is persistent in nature, and results in arsenic contamination in the field. The adsorption and desorption characteristics of DPAA were investigated in two typical Chinese soils, an Acrisol (a variable-charge soil) and a Phaeozem (a constant-charge soil). Their thermodynamics and some of the factors influencing them (i.
View Article and Find Full Text PDFMicrocosms were set up with a PAHs-contaminated soil using biostimulation (addition of ground corn cob) and bioaugmentation (inoculated with Monilinia sp. W5-2). Degradation of polycyclic aromatic hydrocarbons and microbial community were examined at the end of incubation period.
View Article and Find Full Text PDF