Publications by authors named "Wuxian Shi"

Specificity remains a major challenge to current therapeutic strategies for cancer. Mutation associated neoantigens (MANAs) are products of genetic alterations, making them highly specific therapeutic targets. MANAs are HLA-presented (pHLA) peptides derived from intracellular mutant proteins that are otherwise inaccessible to antibody-based therapeutics.

View Article and Find Full Text PDF
Article Synopsis
  • Viral RNA replication begins in host cells with the creation of double-membrane vesicles after the coronavirus enters.
  • The nonstructural protein 3 (nsp3), the largest protein in the coronavirus genome, is crucial for virus replication and transcription, yet its mechanism of action is not fully understood.
  • The study reveals the crystal structure of a specific region of nsp3 (CoV-Y domain) and identifies potential interaction sites for therapeutic targets, which could aid in combating COVID-19 and similar diseases.
View Article and Find Full Text PDF

structure determination from single-wavelength anomalous diffraction using native sulfur or phospho-rus in biomolecules (native-SAD) is an appealing method to mitigate the labor-intensive production of heavy-atom derivatives and seleno-methio-nyl substitutions. The native-SAD method is particularly attractive for membrane proteins, which are difficult to produce and often recalcitrant to grow into decent-sized crystals. Native-SAD uses lower-energy X-rays to enhance anomalous signals from sulfur or phospho-rus.

View Article and Find Full Text PDF

Background And Aims: Radiolabeled short peptide ligands targeting prostate-specific membrane antigen (PSMA) were developed initially for imaging and treatment of prostate cancers. While many nonprostate solid tumors including hepatocellular carcinoma (HCC) express little PSMA, their neovasculature expresses a high level of PSMA, which is avid for Gallium-68-labeled PSMA-targeting radio-ligand (Ga-PSMA-11) for positron emission tomography (PET). However, the lack of a spontaneous animal model of tumor-associated vascular PSMA overexpression has hindered the development and assessment of PSMA-targeting radioligands for imaging and therapy of the nonprostatic cancers.

View Article and Find Full Text PDF

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), threatens global public health. The world needs rapid development of new antivirals and vaccines to control the current pandemic and to control the spread of the variants. Among the proteins synthesized by the SARS-CoV-2 genome, main protease (M also known as 3CL) is a primary drug target, due to its essential role in maturation of the viral polyproteins.

View Article and Find Full Text PDF

KAMO and BLEND provide particularly effective tools to automatically manage the merging of large numbers of data sets from serial crystallography. The requirement for manual intervention in the process can be reduced by extending BLEND to support additional clustering options such as the use of more accurate cell distance metrics and the use of reflection-intensity correlation coefficients to infer `distances' among sets of reflections. This increases the sensitivity to differences in unit-cell parameters and allows clustering to assemble nearly complete data sets on the basis of intensity or amplitude differences.

View Article and Find Full Text PDF

Thiol dioxygenases are a subset of nonheme iron oxygenases that catalyze the formation of sulfinic acids from sulfhydryl-containing substrates and dioxygen. Among this class, cysteine dioxygenases (CDOs) and 3-mercaptopropionic acid dioxygenases (3MDOs) are the best characterized, and the mode of substrate binding for CDOs is well understood. However, the manner in which 3-mercaptopropionic acid (3MPA) coordinates to the nonheme iron site in 3MDO remains a matter of debate.

View Article and Find Full Text PDF

Two new macromolecular crystallography (MX) beamlines at the National Synchrotron Light Source II, FMX and AMX, opened for general user operation in February 2017 [Schneider et al. (2013). J.

View Article and Find Full Text PDF

Apocarotenoids are important signaling molecules generated from carotenoids through the action of carotenoid cleavage dioxygenases (CCDs). These enzymes have a remarkable ability to cleave carotenoids at specific alkene bonds while leaving chemically similar sites within the polyene intact. Although several bacterial and eukaryotic CCDs have been characterized, the long-standing goal of experimentally visualizing a CCD-carotenoid complex at high resolution to explain this exquisite regioselectivity remains unfulfilled.

View Article and Find Full Text PDF

The metalloenzyme protein phosphatase 1 (PP1), which is responsible for ≥50% of all dephosphorylation reactions, is regulated by scores of regulatory proteins, including the highly conserved SDS22 protein. SDS22 has numerous diverse functions, surprisingly acting as both a PP1 inhibitor and as an activator. Here, we integrate cellular, biophysical, and crystallographic studies to address this conundrum.

View Article and Find Full Text PDF

The crystallization of amidase, the ultimate enzyme in the Trp-dependent auxin-biosynthesis pathway, from Arabidopsis thaliana was attempted using protein samples with at least 95% purity. Cube-shaped crystals that were assumed to be amidase crystals that belonged to space group I4 (unit-cell parameters a = b = 128.6, c = 249.

View Article and Find Full Text PDF

structural evaluation of native biomolecules from single-wavelength anomalous diffraction (SAD) is a challenge because of the weakness of the anomalous scattering. The anomalous scattering from relevant native elements - primarily sulfur in proteins and phospho-rus in nucleic acids - increases as the X-ray energy decreases toward their -edge transitions. Thus, measurements at a lowered X-ray energy are promising for making native SAD routine and robust.

View Article and Find Full Text PDF

Carotenoid cleavage dioxygenases (CCDs) use a nonheme Fe(II) cofactor to split alkene bonds of carotenoid and stilbenoid substrates. The iron centers of CCDs are typically five-coordinate in their resting states, with solvent occupying an exchangeable site. The involvement of this iron-bound solvent in CCD catalysis has not been experimentally addressed, but computational studies suggest two possible roles.

View Article and Find Full Text PDF

Advances in synchrotron technology are changing the landscape of macromolecular crystallography. The two recently opened beamlines at NSLS-II-AMX and FMX-deliver high-flux microfocus beams that open new possibilities for crystallographic data collection. They are equipped with state-of-the-art experimental stations and automation to allow data collection on previously intractable crystals.

View Article and Find Full Text PDF

The N-terminal transactivation domain (NTD) of estrogen receptor alpha, a well-known member of the family of intrinsically disordered proteins, mediates the receptor's transactivation function. However, an accurate molecular dissection of NTD's structure-function relationships remains elusive. Here, we show that the NTD adopts a mostly disordered, unexpectedly compact conformation that undergoes structural expansion on chemical denaturation.

View Article and Find Full Text PDF

The Frontier Microfocus Macromolecular Crystallography (FMX) beamline at the National Synchrotron Light Source II with its 1 µm beam size and photon flux of 3 × 10 photons s at a photon energy of 12.66 keV has reached unprecedented dose rates for a structural biology beamline. The high dose rate presents a great advantage for serial microcrystallography in cutting measurement time from hours to minutes.

View Article and Find Full Text PDF

Carotenoid cleavage oxygenases (CCO) are non-heme iron enzymes that catalyze oxidative cleavage of alkene bonds in carotenoid and stilbenoid substrates. Previously, we showed that the iron cofactor of CAO1, a resveratrol-cleaving member of this family, can be substituted with cobalt to yield a catalytically inert enzyme useful for trapping active site-bound stilbenoid substrates for structural characterization. Metal substitution may provide a general method for identifying the natural substrates for CCOs in addition to facilitating structural and biophysical characterization of CCO-carotenoid complexes under normal aerobic conditions.

View Article and Find Full Text PDF

The inflammasomes are signaling platforms that promote the activation of inflammatory caspases such as caspases-1, -4, -5, and -11. Recent studies identified gasdermin D (GSDMD) as an effector for pyroptosis downstream of the inflammasome signaling pathways. Cleavage of GSDMD by inflammatory caspases allows its N-terminal domain to associate with membrane lipids and form pores that induce pyroptotic cell death.

View Article and Find Full Text PDF

With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallo-graphy with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described.

View Article and Find Full Text PDF

The HIV trans-activator Tat recruits the host transcription elongation factor P-TEFb to stimulate proviral transcription. Phosphorylation of Thr-186 on the activation loop (T-loop) of cyclin-dependent kinase 9 (CDK9) is essential for its kinase activity and assembly of CDK9 and cyclin T1 (CycT1) to form functional P-TEFb. Phosphorylation of a second highly conserved T-loop site, Ser-175, alters the competitive binding of Tat and the host recruitment factor bromodomain containing 4 (BRD4) to P-TEFb.

View Article and Find Full Text PDF

RPE65 is the essential trans-cis isomerase of the classical retinoid (visual) cycle. Mutations in RPE65 give rise to severe retinal dystrophies, most of which are associated with loss of protein function and recessive inheritance. The only known exception is a c.

View Article and Find Full Text PDF

Obtaining protein crystals suitable for X-ray diffraction studies comprises the greatest challenge in the determination of protein crystal structures, especially for membrane proteins and protein complexes. Although high purity has been broadly accepted as one of the most significant requirements for protein crystallization, a recent study of the Escherichia coli proteome showed that many proteins have an inherent propensity to crystallize and do not require a highly homogeneous sample (Totir et al., 2012).

View Article and Find Full Text PDF

Structural characterization of proteins and their antigen complexes is essential to the development of new biologic-based medicines. Amino acid-specific covalent labeling (CL) is well suited to probe such structures, especially for cases that are difficult to examine by alternative means due to size, complexity, or instability. We present here a detailed account of carboxyl group labeling (with glycine ethyl ester (GEE) tagging) applied to a glycosylated monoclonal antibody therapeutic (mAb).

View Article and Find Full Text PDF

Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive because of uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for the treatment of age-related macular degeneration.

View Article and Find Full Text PDF

Amino acid-specific covalent labeling is well suited to probe protein structure and macromolecular interactions, especially for macromolecules and their complexes that are difficult to examine by alternative means, due to size, complexity, or instability. Here we present a detailed account of carbodiimide-based covalent labeling (with GEE tagging) applied to a glycosylated monoclonal antibody therapeutic, which represents an important class of biologic drugs. Characterization of such proteins and their antigen complexes is essential to development of new biologic-based medicines.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Wuxian Shi"

  • - Wuxian Shi's research focuses on the structural biology of proteins and their interactions, particularly in relation to diseases such as cancer and COVID-19, emphasizing the significance of hydrophobic interactions and protein structure in therapeutic targeting.
  • - Recent findings highlight the development of mutation-associated neoantigens (MANAs) as specific targets for cancer therapy and the structural elucidation of important viral proteins from SARS-CoV-2, which are crucial for designing antiviral strategies.
  • - Shi's work also contributes to advancements in crystallography techniques, improving methods for structure determination of challenging biomolecules, thereby enhancing the understanding of enzyme mechanisms and protein interactions in various biological processes.