Publications by authors named "Wutz A"

The ER-resident proteins VMP1 and TMEM41B share a conserved DedA domain, which confers lipid scramblase activity. Loss of either gene results in embryonic lethality in mice and defects in autophagy and lipid droplet metabolism. To investigate their role in pluripotency and lineage specification, we generated Vmp1 and Tmem41b mutations in mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF

Production of oocytes from pluripotent cell cultures in a dish represents a new paradigm in stem cell and developmental biology and has implications for how we think about life. The spark of life for the next generation occurs at fertilization when sperm and oocyte fuse. In animals, gametes are the only cells that transmit their genomes to the next generation.

View Article and Find Full Text PDF

Mouse embryonic stem cells (ESCs) possess a pluripotent developmental potential and a stable karyotype. An exception is the frequent loss of one X chromosome in female ESCs derived from inbred mice. In contrast, female ESCs from crosses between different Mus musculus subspecies often maintain two X chromosomes and can model X chromosome inactivation.

View Article and Find Full Text PDF

Women veterans are a steadily growing population and have unique military experiences (e.g., report high rates of sexual harassment and assault) that are impactful across the lifespan.

View Article and Find Full Text PDF

The Hedgehog (HH) pathway is crucial for embryonic development, and adult homeostasis. Its dysregulation is implicated in multiple diseases. Existing cellular models used to study HH signal regulation in mammals do not fully recapitulate the complexity of the pathway.

View Article and Find Full Text PDF

Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation.

View Article and Find Full Text PDF

For about 30 years, SPEN has been the subject of research in many different fields due to its variety of functions and its conservation throughout a wide spectrum of species, like worms, arthropods, and vertebrates. To date, 216 orthologues have been documented. SPEN had been studied for its role in gene regulation in the context of cell signaling, including the NOTCH or nuclear hormone receptor signaling pathways.

View Article and Find Full Text PDF

Recent studies have reported the differentiation of pluripotent cells into oocytes in vitro. However, the developmental competence of in vitro-generated oocytes remains low. Here, we perform a comprehensive comparison of mouse germ cell development in vitro over all culture steps versus in vivo with the goal to understand mechanisms underlying poor oocyte quality.

View Article and Find Full Text PDF

Recent neuroscience experiments have brought inconsistent findings to light about the influence of neural activity in the alpha-frequency band (at ≈10 Hz) on the temporal dynamics of visual perception. Whereas strong alpha effects were found when perception was more based on endogenous factors, there were null-effects for alpha when perception relied more on objective physical parameters. In this Perspective, I open up a new view on neural alpha activity that resolves some important aspects of this controversy by interpreting alpha not as temporal processing of sensory inputs per se but above all as the observer's internal processing dynamics, their so-called perception sets.

View Article and Find Full Text PDF

Categories help us make sense of sensory input. A new study has directly compared category-related brain signals between human infants and adults, discovering delayed and temporally highly compressed processing in infants.

View Article and Find Full Text PDF

Hedgehog (HH) signaling is important for embryonic pattering and stem cell differentiation. The G protein-coupled receptor (GPCR) Smoothened (SMO) is the key HH signal transducer modulating both transcription-dependent and transcription-independent responses. We show that SMO protects naive mouse embryonic stem cells (ESCs) from dissociation-induced cell death.

View Article and Find Full Text PDF

Ongoing fluctuations in neural excitability and connectivity influence whether or not a stimulus is seen. Do they also influence which stimulus is seen? We recorded magnetoencephalography data while 21 human participants viewed face or house stimuli, either one at a time or under bistable conditions induced through binocular rivalry. Multivariate pattern analysis revealed common neural substrates for rivalrous versus nonrivalrous stimuli with an additional delay of ∼36 msec for the bistable stimulus, and poststimulus signals were source-localized to the fusiform face area.

View Article and Find Full Text PDF

Mammalian haploid cells have applications for genetic screening and substituting gametic genomes. Here, we characterize a culture system for obtaining haploid primordial germ cell-like cells (PGCLCs) from haploid mouse embryonic stem cells (ESCs). We find that haploid cells show predisposition for PGCLCs, whereas a large fraction of somatic cells becomes diploid.

View Article and Find Full Text PDF

The reactivation of X-linked genes is observed in some primary breast tumors. Two active X chromosomes are also observed in female embryonic stem cells (ESCs), but whether double doses of X-linked genes affect DNA repair efficiency remains unclear. Here, we establish isogenic female/male ESCs and show that the female ESCs are more sensitive to camptothecin and have lower gene targeting efficiency than male ESCs, suggesting that homologous recombination (HR) efficiency is reduced in female ESCs.

View Article and Find Full Text PDF

Classical ways of analyzing neural time series data has led to static views on cognition, in which the cognitive processes are linked to sustained neural activity and interpreted as stationary states. The core analytical focus was on slow power modulations of neural oscillations averaged across many experimental trials. Whereas this custom analytical approach reduces the complexity and increases the signal-to-noise ratio, it may disregard or even remove important aspects of the underlying neural dynamics.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the conversion process from euchromatin (EC) to facultative heterochromatin (fHC) using Xist and Tsix as a model, revealing that this transition involves a series of specific steps.
  • - In mouse epiblast stem cells, the induction of Tsix initiates gene silencing at the Xist promoter, with initial changes showing an open chromatin structure that eventually leads to irreversible silencing.
  • - Various histone modifications occur throughout the process, culminating in changes like nucleosome positioning and DNA methylation that stabilize gene silencing independently of Tsix.
View Article and Find Full Text PDF

Ongoing oscillatory neural activity before stimulus onset influences subsequent visual perception. Specifically, both the power and the phase of oscillations in the alpha-frequency band (9-13 Hz) have been reported to predict the detection of visual stimuli. Up to now, the functional mechanisms underlying pre-stimulus power and phase effects on upcoming visual percepts are debated.

View Article and Find Full Text PDF

Food packaging films were coated with polyvinyl acetate (PVA) containing different concentrations of citral or Litsea (L.) cubeba essential oil (EO). Antimicrobial contact trials in style of ISO22916 were performed.

View Article and Find Full Text PDF

The fibroblast growth factor (FGF) and the transforming growth factor-β (TGF-β) pathways are both involved in the maintenance of human embryonic stem cells (hESCs) and regulate the onset of their differentiation. Their converging functions have suggested that these pathways might share a wide range of overlapping targets. Published studies have focused on the long-term effects (24-48 h) of FGF and TGF-β inhibition in hESCs, identifying direct and indirect target genes.

View Article and Find Full Text PDF

In organisms with sexual reproduction, germ cells are the source of totipotent cells that develop into new individuals. In mice, fertilization of an oocyte by a spermatozoon creates a totipotent zygote. Recently, several publications have reported that haploid embryonic stem cells (haESCs) can be a substitute for gametic genomes and contribute to embryos, which develop into mice.

View Article and Find Full Text PDF

Ensemble perception refers to the ability to report attributes of a group of objects, rather than focusing on only one or a few individuals. An everyday example of ensemble perception is the ability to estimate the numerosity of a large number of items. The time course of ensemble processing, including that of numerical estimation, remains a matter of debate, with some studies arguing for rapid, "preattentive" processing and other studies suggesting that ensemble perception improves with longer presentation durations.

View Article and Find Full Text PDF
Article Synopsis
  • * Haploid embryonic stem cells (haESCs) can be created from uniparental blastocysts and have been used to replace sperm or oocyte genomes for generating mice.
  • * The study shows that deleting specific regions of DNA (IG-DMR and H19-DMR) from parthenogenetic haESCs allows the creation of fertile semi-cloned mice and highlights the issue of polyploidy in these embryos, which could impact further development.
View Article and Find Full Text PDF