Polymers containing lactam structures play a crucial role in both natural biological systems and human life, and their synthesis, functions and applications are of utmost importance for biomimetics and the creation of new materials. In this study, we developed an efficient heterogeneous Pauson-Khand polymerization (h-PKP) method for the controlled synthesis of main-chain poly(γ-lactam)s containing α, β-unsaturated γ-lactam functionalities using readily available internal alkynes and imines. The molecular weights of the resulting poly(N-Ts/γ-lactam)s can be precisely controlled by adjusting the ratio of phenyl formate and nickel.
View Article and Find Full Text PDFLung cancer, a highly prevalent and lethal form of cancer, is often associated with oxidative stress. Photodynamic therapy (PDT) has emerged as a promising alternative therapeutic tool in cancer treatments, but its efficacy is closely correlated to the photosensitizers generating reactive oxygen species (ROS) and the antioxidant capacity of tumor cells. In particular, glutathione (GSH) can reduce the ROS and thus compromise PDT efficacy.
View Article and Find Full Text PDFBreast cancer (BC) remains a significant global health challenge for women despite advancements in early detection and treatment. Isoliquiritigenin (ISL), a compound derived from traditional Chinese medicine, has shown potential as an anti-BC therapy, but its low bioavailability and poor water solubility restrict its effectiveness. In this study, we created theranostic nanoparticles consisting of ISL and a near-infrared (NIR) photosensitizer, TBPI, which displays aggregation-induced emission (AIE), with the goal of providing combined chemo- and photodynamic therapies (PDT) for BC.
View Article and Find Full Text PDF