Publications by authors named "Wuthier R"

Matrix vesicles (MVs) induce calcification during endochondral bone formation. Experimental methods for structural, compositional, and functional analysis of MVs are reviewed. MV proteins, enzymes, receptors, transporters, regulators, lipids and electrolytes are detailed.

View Article and Find Full Text PDF

The differential accumulation of fluorescent molecules in tumorigenic versus normal cells is a well-reported phenomenon and is the basis for photodiagnostic therapy. Through the use of confocal microscopy, the kinetic uptake and accumulation of fusarochromanone (FC101) was determined in two lines of living tumorigenic cells of mesenchymal-epithelial origin and normal fibroblast cells. Like other fluorescent cationic molecules, FC101 showed increased accumulation in tumorigenic cells; however, unlike other molecules, it appeared to be accumulated in a time-dependent manner.

View Article and Find Full Text PDF

Mg(2+) and Zn(2+) are present in the mineral of matrix vesicles (MVs) and biological apatites, and are known to influence the onset and progression of mineral formation by amorphous calcium phosphate (ACP) and hydroxyapatite (HAP). However, neither has been studied systematically for its effect on mineral formation by phosphatidylserine-Ca(2+)-Pi complexes (PS-CPLX), an important constituent of the MV nucleation core. Presented here are studies on the effects of increasing levels of Mg(2+) and Zn(2+) on the process of mineral formation, either when present in synthetic cartilage lymph (SCL), or when incorporated during the formation of PS-CPLX.

View Article and Find Full Text PDF

Matrix vesicles (MVs) in the growth plate bind to cartilage collagens and initiate mineralization of the extracellular matrix. Native MVs have been shown to contain a nucleational core responsible for mineral formation that is comprised of Mg(2+)-containing amorphous calcium phosphate and lipid-calcium-phosphate complexes (CPLXs) and the lipid-dependent Ca(2+)-binding proteins, especially annexin-5 (Anx-5), which greatly enhances mineral formation. Incorporation of non-Ca(2+)-binding MV lipids impedes mineral formation by phosphatidylserine (PS)-CPLX.

View Article and Find Full Text PDF

The nucleational core of matrix vesicles contains a complex (CPLX) of phosphatidylserine (PS), Ca(2+), and inorganic phosphate (P(i)) that is important to both normal and pathological calcification. Factors required for PS-CPLX formation and nucleational activity were studied using in vitro model systems and molecular dynamic simulations. Ca(2+) levels required for and rates of PS-CPLX formation were monitored by light scattering at 340 nm, assessing changes in amount and particle size.

View Article and Find Full Text PDF

Fusarochromanone is a toxic metabolite produced by Fusarium equiseti, a fungus present in decaying cereal plants in northern latitudes; it has been detected in various food grains. Fusarochromanone has been shown to have both stimulatory and inhibitory effects on various mammalian cells, depending on the concentration used. Whether these cytotoxic effects can be used in the clinical treatment of tumors remains to be established.

View Article and Find Full Text PDF

Annexins A5, A2, and A6 (Anx-A5, -A2, and -A6) are quantitatively major proteins of the matrix vesicle nucleational core that is responsible for mineral formation. Anx-A5 significantly activated the induction and propagation of mineral formation when incorporated into synthetic nucleation complexes made of amorphous calcium phosphate (ACP) and Anx-A5 or of phosphatidylserine (PS) plus ACP (PS-CPLX) and Anx-A5. Incorporation of Anx-A5 markedly shortened the induction time, greatly increasing the rate and overall amount of mineral formed when incubated in synthetic cartilage lymph.

View Article and Find Full Text PDF

Matrix vesicles (MVs) are involved in de novo mineral formation by nearly all vertebrate tissues. The driving force for MV mineralization is a nucleational core composed of three principal constituents: (i) amorphous calcium phosphate (ACP), complexed in part with phosphatidylserine (PS) to form (ii) calcium-phosphate-lipid complexes (CPLX), and (iii) annexin A5 (AnxA5), the principal lipid-dependent Ca(2+)-binding protein in MVs. We describe methods for reconstituting the nucleational core using a biomimetic approach and for analyzing the kinetics of its induction of mineral formation.

View Article and Find Full Text PDF

Time- and dosage-dependent effects of 1,25(OH)(2)D(3) and 24,25(OH)(2)D(3) on primary cultures of pre- and post-confluent avian growth plate (GP) chondrocytes were examined. Cultures were grown in either a serum-containing culture medium designed to closely mimic normal GP extracellular fluid (DATP5) or a commercially available serum-free media (HL-1) frequently used for studying skeletal cells. Hoechst DNA, Lowry protein, proteoglycan (PG), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) activity and calcium and phosphate mineral deposition in the extracellular matrix were measured.

View Article and Find Full Text PDF

We report here a comparative study of the development and behavior of chondrocytes isolated from normal growth plate tissue, tibial dyschondroplasic lesions, and from articular cartilage. The objective of these studies was to determine whether the properties exhibited by chondrocytes in dysplasic lesions or in articular cartilage were due to their cellular phenotype, their environment, or both. We had previously analyzed the electrolytes and amino acid levels in the extracellular fluid of avian growth plate chondrocytes.

View Article and Find Full Text PDF

Matrix vesicles (MV) are lipid bilayer-enclosed nanoscale structures that initiate extracellular mineral formation in most vertebrate species. Little attention has been given to differences between species in membrane lipid composition or to how new mineral is formed in MV. To explore more precisely the lipids of MV isolated from avian and bovine species, we developed a new high-performance liquid chromatography (HPLC) method used in combination with evaporative light scattering detection (ELSD) to quantify their lipid composition.

View Article and Find Full Text PDF

The mechanism of matrix vesicle (MV) mineralization was studied using MVs isolated from normal growth plate tissue, as well as several putative intermediates in the MV mineralization pathway--amorphous calcium phosphate (ACP), calcium phosphate phosphatidylserine complex (CPLX) and hydroxyapatite (HAP). Radionuclide uptake and increase in turbidity were used to monitor mineral formation during incubation in synthetic cartilage lymph (SCL). Inhibitors of phosphate (Pi) metabolism, as well as replacing Na(+) with various cations, were used to study MV Pi transport, which had been thought to be Na(+)-dependent.

View Article and Find Full Text PDF

Stable, large unilamellar vesicles (LUV) have been constructed that model matrix vesicles (MV) in inducing de novo mineral formation when incubated in synthetic cartilage lymph (SCL). Using a dialysis method for incorporation of predetermined pure lipid, electrolyte and protein constituents, the detergent n-octyl beta-D-glucopyranoside enabled formation of stable, impermeable LUV with a diameter ( approximately 300 nm), lipid composition (phosphatidylcholine-phosphatidylserine-cholesterol, 7:2:2, molar ratio) and enclosed inorganic phosphate level (25-100 mM) similar to that of native MV. Mineral formation by these LUVs was measured by 45Ca(2+) uptake and FTIR analysis following incubation in SCL.

View Article and Find Full Text PDF

Matrix vesicles released by epiphyseal growth plate chondrocytes are known to contain a significant quantity of labile Zn(2+). Zonal analysis of chicken metatarsal bones showed that the resting/proliferative region of the growth plate contained high levels of Zn(2+) with significantly lower levels in the hypertrophic cartilage suggesting a loss of cellular Zn(2+) as the chondrocytes mature. Intracellular labile Zn(2+) was measured in primary cultures of growth plate chondrocytes by assay with the fluorescent Zn-chelator toluenesulfonamidoquinoline (TSQ) and imaged by multi-photon laser scanning microscopy (MPLSM) with the TSQ derivative zinquin.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) is a key signal protein in early embryological patterning of limb bud development. Its analog, Indian hedgehog (Ihh), primarily expressed during early cartilage development in prehypertrophic chondrocytes, regulates proliferation and suppresses terminal differentiation of postnatal growth plate (GP) chondrocytes. We report here for the first time that both Shh and Ihh mRNA are expressed in the GP of rapidly growing 6-week-old broiler-strain chickens.

View Article and Find Full Text PDF

This report describes Pi transport activity in chondrocytes isolated from the growth plate (GP) of normal adolescent chickens grown in primary cell culture. Our recent work showed that Pi transport in matrix vesicles (MV) isolated from normal GP cartilage was not strictly Na+-dependent, whereas previously characterized Pi transport from rachitic GP cartilage MV was. This Na+-dependent Pi transporter (NaPiT), a member of the Type III Glvr-1 gene family, is expressed only transiently during early differentiation of GP cartilage, is enhanced by Pi-deficiency, and is most active at pH 6.

View Article and Find Full Text PDF

Matrix vesicles are lipid bilayer-enclosed structures that initiate extracellular mineral formation. Little attention has been given to how newly formed mineral interacts with the lipid constituents and then emerges from the lumen. To explore whether specific lipids bind to the incipient mineral and if breakdown of the membrane is involved, we analyzed changes in lipid composition and extractability during vesicle-induced calcification.

View Article and Find Full Text PDF

As a continuation of our studies on mineralization in epiphyseal growth plate (GP) chondrocyte cultures, the effects of tri-iodothyronine (T3) in both beta-glycerophosphate-containing, serum-free (HL-1) and beta-glycerophosphate-free, serum-containing medium (DATP5) were studied. The GP cells responded to T3 in a serum-, stage-, and dosage-dependent manner. Added at graded levels (0.

View Article and Find Full Text PDF

Endochondral bone formation involves the progression of epiphyseal growth plate chondrocytes through a sequence of developmental stages which include proliferation, differentiation, hypertrophy, and matrix calcification. To study this highly coordinated process, we infected growth plate chondrocytes with Rous sarcoma virus (RSV) and studied the effects of RSV transformation on cell proliferation, differentiation, matrix synthesis, and mineralization. The RSV-transformed chondrocytes exhibited a distinct bipolar, fibroblast-like morphology, while the mock-infected chondrocytes had a typical polygonal morphology.

View Article and Find Full Text PDF

The effects of the trace metals zinc (Zn), manganese (Mn), and cadmium (Cd) on the metabolism of growth plate chondrocytes was examined using a mineralizing culture system. Supplementation of serum-free primary cultures of growth plate chondrocytes with 10-100 mu m Zn resulted in an increase in cell protein and greatly increased alkaline phosphatase (AP) activity; however, above 25 mu m Zn mineralization of the cultures was reduced. The effects of Zn on cellular protein and AP activity were enhanced by the addition of the albumin to the culture media.

View Article and Find Full Text PDF

A phosphatidyl serine-amorphous calcium phosphate complex has been synthesized as a model of the matrix vesicle system that is associated with the induction of mineral deposition in bone, cartilage and dentine. The complex has been studied using a novel technique of subtractive extended X-ray absorption fine structure (EXAFS). This enables spectra of the components of the molecules to be subtracted from the complex so as to identify the sites of interaction.

View Article and Find Full Text PDF

Osteogenic protein-1 (OP-1), a member of the TGF-beta family of proteins, induces endochondral bone formation. Here we studied the effect of OP-1 on the development of primary cultures of avian growth plate (GP) chondrocytes in either serum-free or serum-containing medium, in the absence or presence of retinoic acid (RA). OP-1 was added on day 7 of culture and continued for 7 days, or until the cultures were harvested, typically on day 21.

View Article and Find Full Text PDF

Following exposure to cadmium or zinc, chickens were sacrificed and the liver, kidney, and bone epiphyseal growth plates harvested. When cytosolic extracts of the growth plate cartilage were fractionated by gel filtration chromatography, a protein with high metal-binding capacity and low ultraviolet (UV) absorbance eluted in the same position as liver metallothionein (MT) and a MT standard. Cd or Zn treatment resulted in a 25-fold or 5-fold induction in growth plate MT, respectively.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) play a crucial role in tissue remodeling. In growth plate (GP) cartilage, extensive remodeling occurs at the calcification front. To study the potential involvement of MMPs in retinoic acid (RA) regulation of skeletal development, we studied the effect of all-trans-RA on MMPs levels in mineralizing chicken epiphyseal chondrocyte primary cultures.

View Article and Find Full Text PDF

The effect of retinoic acid (RA) on primary cultures of growth plate chondrocytes obtained from weight-bearing joints was examined, Chondrocytes were isolated from the tibial epiphysis of 6- to 8-week-old broiler-strain chickens and cultured in either serum-containing or serum-free media. RA was administered at low levels either transiently or continuously after the cells had become established in culture. Effects of RA on cellular protein levels, alkaline phosphatase (AP) activity, synthesis of proteoglycan (PG), matrix calcification, cellular morphology, synthesis of tissue-specific types of collagen, and level of matrix metalloproteinase (MMP) activity were explored.

View Article and Find Full Text PDF