Publications by authors named "Wushour Silamu"

This study focuses on Scene Text Recognition (STR), which plays a crucial role in various applications of artificial intelligence such as image retrieval, office automation, and intelligent transportation systems. Currently, pre-trained vision-language models have become the foundation for various downstream tasks. CLIP exhibits robustness in recognizing both regular (horizontal) and irregular (rotated, curved, blurred, or occluded) text in natural images.

View Article and Find Full Text PDF

It is becoming harder to tell rumors from non-rumors as social media becomes a key news source, which invites malicious manipulation that could do harm to the public's health or cause financial loss. When faced with situations when the session structure of comment sections is deliberately disrupted, traditional models do not handle them adequately. In order to do this, we provide a novel rumor detection architecture that combines dual comparison learning, adversarial training, and attention filters.

View Article and Find Full Text PDF

Aiming at the problems of Uyghur oblique deformation, character adhesion and character similarity in scene images, this paper proposes a scene Uyghur recognition model with enhanced visual prediction. First, the content-aware correction network TPS++ is used to perform feature-level correction for skewed text. Then, ABINet is used as the basic recognition network, and the U-Net structure in the vision model is improved to aggregate horizontal features, suppress multiple activation phenomena, better describe the spatial characteristics of character positions, and alleviate the problem of character adhesion.

View Article and Find Full Text PDF

Linguistic knowledge helps a lot in scene text recognition by providing semantic information to refine the character sequence. The visual model only focuses on the visual texture of characters without actively learning linguistic information, which leads to poor model recognition rates in some noisy (distorted and blurry, etc.) images.

View Article and Find Full Text PDF

Few-shot Relation Classification identifies the relation between target entity pairs in unstructured natural language texts by training on a small number of labeled samples. Recent prototype network-based studies have focused on enhancing the prototype representation capability of models by incorporating external knowledge. However, the majority of these works constrain the representation of class prototypes implicitly through complex network structures, such as multi-attention mechanisms, graph neural networks, and contrastive learning, which constrict the model's ability to generalize.

View Article and Find Full Text PDF

There is a growing interest in scene text detection for arbitrary shapes. The effectiveness of text detection has also evolved from horizontal text detection to the ability to perform text detection in multiple directions and arbitrary shapes. However, scene text detection is still a challenging task due to significant differences in size and aspect ratio and diversity in shape, as well as orientation, coarse annotations, and other factors.

View Article and Find Full Text PDF

The segmentation-based scene text detection algorithm has advantages in scene text detection scenarios with arbitrary shape and extreme aspect ratio, depending on its pixel-level description and fine post-processing. However, the insufficient use of semantic and spatial information in the network limits the classification and positioning capabilities of the network. Existing scene text detection methods have the problem of losing important feature information in the process of extracting features from each network layer.

View Article and Find Full Text PDF