Wearable thermoelectric generators (TEGs), which can convert human body heat to electricity, provide a promising solution for self-powered wearable electronics. However, their power densities still need to be improved aiming at broad practical applications. Here, a stretchable TEG that achieves comfortable wearability and outstanding output performance simultaneously is reported.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
Wearable thermoelectrics has attracted significant interest in recent years. Among them, rigid-structure thermoelectric generators (TEGs) were seldomly employed for wearable applications, although those exhibit significant advantages of high device output performance and impact resistance. Here, we report a type of rigid wearable TEGs (w-TEGs) without ceramic substrates made using a simple cutting-and-bonding method.
View Article and Find Full Text PDFElectrochemical polymerization has proven very effective in fabricating flexible organic/inorganic composite films with high thermoelectric (TE) performance. In this work, dynamic three-phase interfacial electropolymerization of 3,4-ethylenedioxythiophene (EDOT) combined with physical mixing of single-walled carbon nanotubes (SWCNT) and tellurium nanowires was employed to prepare PEDOT/Te/SWCNT thermoelectric composites. When the loadings of Te and SWCNT were changed, the electropolymerized PEDOT exhibited great capability of improving TE properties of the resultant composites with a highest electrical conductivity (σ) of 900.
View Article and Find Full Text PDF