We demonstrate the effect of spin-momentum locking of upconversion photoluminescence emitted from rare-earth doped nanocrystals coupled to a phase-gradient dielectric metasurface. We observe different directionalities for left and right circular polarized light and associate this experimental observation with realized for upconverted photoluminescence that is manifested in the spin-dependent splitting of emitted light in the momentum space.
View Article and Find Full Text PDFDispersion engineering is a powerful and versatile tool that can vary the speed of light signals and induce negative-mass effects in the dynamics of particles and quasiparticles. Here, we show that dissipative coupling between bound electron-hole pairs (excitons) and photons in an optical microcavity can lead to the formation of exciton polaritons with an inverted dispersion of the lower polariton branch and hence, a negative mass. We perform direct measurements of the anomalous dispersion in atomically thin (monolayer) WS crystals embedded in planar microcavities and demonstrate that the propagation direction of the negative-mass polaritons is opposite to their momentum.
View Article and Find Full Text PDFBackground: Brood parasites can exert strong selection pressure on their hosts. Many brood parasites escape their detection by mimicking sensory cues of their hosts. However, there is little evidence whether or not the hosts are able to escape the parasites' mimicry by changing these cues.
View Article and Find Full Text PDFInteractions between quasiparticles are of fundamental importance and ultimately determine the macroscopic properties of quantum matter. A famous example is the phenomenon of superconductivity, which arises from attractive electron-electron interactions that are mediated by phonons or even other more exotic fluctuations in the material. Here we introduce mobile exciton impurities into a two-dimensional electron gas and investigate the interactions between the resulting Fermi polaron quasiparticles.
View Article and Find Full Text PDFExciton polaritons (polaritons herein) in transition-metal dichalcogenide monolayers have attracted significant attention due to their potential for polariton-based optoelectronics. Many of the proposed applications rely on the ability to trap polaritons and to reach macroscopic occupation of their ground energy state. Here, we engineer a trap for room-temperature polaritons in an all-dielectric optical microcavity by locally increasing the interactions between the WS_{2} excitons and cavity photons.
View Article and Find Full Text PDFIndium nitride (InN) has been of significant interest for creating and studying two-dimensional electron gases (2DEG). Herein we demonstrate the formation of 2DEGs in ultrathin doped and undoped 2D InN nanosheets featuring high carrier mobilities at room temperature. The synthesis is carried out via a two-step liquid metal-based printing method followed by a microwave plasma-enhanced nitridation reaction.
View Article and Find Full Text PDFTopology is central to understanding and engineering materials that display robust physical phenomena immune to imperfections. Different topological phases of matter are characterized by topological invariants. In energy-conserving (Hermitian) systems, these invariants are determined by the winding of eigenstates in momentum space.
View Article and Find Full Text PDFMonolayer transition metal dichalcogenide crystals (TMDCs) hold great promise for semiconductor optoelectronics because their bound electron-hole pairs (excitons) are stable at room temperature and interact strongly with light. When TMDCs are embedded in an optical microcavity, excitons can hybridise with cavity photons to form exciton polaritons, which inherit useful properties from their constituents. The ability to manipulate and trap polaritons on a microchip is critical for applications.
View Article and Find Full Text PDFWe report the observation of low-energy, low-momenta collective oscillations of an exciton-polariton condensate in a round "box" trap. The oscillations are dominated by the dipole and breathing modes, and the ratio of the frequencies of the two modes is consistent with that of a weakly interacting two-dimensional trapped Bose gas. The speed of sound extracted from the dipole oscillation frequency is smaller than the Bogoliubov sound, which can be partly explained by the influence of the incoherent reservoir.
View Article and Find Full Text PDFCircular Bragg gratings compose a very appealing photonic platform and nanophotonic interface for the controlled light-matter coupling of emitters in nanomaterials. Here, we discuss the integration of exfoliated monolayers of WSe with GaInP Bragg gratings. We apply hyperspectral imaging to our coupled system, and explore the spatio-spectral characteristics of our coupled monolayer-cavity system.
View Article and Find Full Text PDFAtomically thin transition metal dichalcogenide crystals (TMDCs) have extraordinary optical properties that make them attractive for future optoelectronic applications. Integration of TMDCs into practical all-dielectric heterostructures hinges on the ability to passivate and protect them against necessary fabrication steps on large scales. Despite its limited scalability, encapsulation of TMDCs in hexagonal boron nitride (hBN) currently has no viable alternative for achieving high performance of the final device.
View Article and Find Full Text PDFInsect brood parasites have evolved a variety of strategies to avoid being detected by their hosts. Few previous studies on cuckoo wasps (Hymenoptera: Chrysididae), which are natural enemies of solitary wasps and bees, have shown that chemical mimicry, i.e.
View Article and Find Full Text PDFThe impact of different reproductive barriers on species or population isolation may vary in different stages of speciation depending on evolutionary forces acting within species and through species' interactions. Genetic incompatibilities between interacting species are expected to reinforce prezygotic barriers in sympatric populations and lead to cascade reinforcement between conspecific populations living within and outside the areas of sympatry. We tested these predictions and studied whether and how the strength and target of reinforcement between Drosophila montana and Drosophila flavomontana vary between sympatric populations with different histories and species abundances.
View Article and Find Full Text PDFBosonic condensation belongs to the most intriguing phenomena in physics, and was mostly reserved for experiments with ultra-cold quantum gases. More recently, it became accessible in exciton-based solid-state systems at elevated temperatures. Here, we demonstrate bosonic condensation driven by excitons hosted in an atomically thin layer of MoSe, strongly coupled to light in a solid-state resonator.
View Article and Find Full Text PDFThe wasp family Vespidae comprises more than 5000 described species which represent life history strategies ranging from solitary and presocial to eusocial and socially parasitic. The phylogenetic relationships of the major vespid wasp lineages (i.e.
View Article and Find Full Text PDFStrong light matter coupling between excitons and microcavity photons, as described in the framework of cavity quantum electrodynamics, leads to the hybridization of light and matter excitations. The regime of collective strong coupling arises, when various excitations from different host media are strongly coupled to the same optical resonance. This leads to a well-controllable admixture of various matter components in three hybrid polariton modes.
View Article and Find Full Text PDFThe cuticle of insects is covered by a layer of hydrocarbons (CHC), whose original function is the protection from desiccation and pathogens. However, in most insects CHC profiles are species specific. While this variability among species was largely linked to communication and recognition functions, additional selective forces may shape insect CHC profiles.
View Article and Find Full Text PDFFemales of most aculeate Hymenoptera mate only once and males are therefore under a strong competitive pressure which is expected to favour the evolution of rapid detection of virgin females. In several bee species, the cuticular hydrocarbon (CHC) profile exhibited by virgin females elicits male copulation attempts. However, it is still unknown how widespread this type of sexual communication is within Aculeata.
View Article and Find Full Text PDFCleptoparasitic wasps and bees smuggle their eggs into the nest of a host organism. Here the larvae of the cleptoparasite feed upon the food provision intended for the offspring of the host. As cleptoparasitism incurs a loss of fitness for the host organism (offspring of the host fail to develop), hosts of cleptoparasites are expected to exploit cues that alert them to potential cleptoparasite infestation.
View Article and Find Full Text PDFDelayed reconstitution of the T cell compartment in recipients of allogeneic stem cell grafts is associated with an increase of reactivation of latent viruses. Thereby, the transplanted T cell repertoire appears to be one of the factors that affect T cell reconstitution. Therefore, we studied the T cell receptor beta (TCRβ) gene rearrangements of flow cytometry-sorted CD4(+) and CD8(+) T cells from the peripheral blood of 23 allogeneic donors before G-CSF administration and on the day of apheresis.
View Article and Find Full Text PDFWe describe a setup consisting of a 4f pulse shaper and a microscope with a high-NA objective lens and discuss the aspects most relevant for an undistorted spatiotemporal profile of the focused beam. We demonstrate shaper-assisted pulse compression in focus to a sub-10-fs duration using phase-resolved interferometric spectral modulation (PRISM). We introduce a nanostructure-based method for sub-diffraction spatiotemporal characterization of strongly focused pulses.
View Article and Find Full Text PDF