Front Optoelectron
April 2023
Most learning-based methods previously used in image dehazing employ a supervised learning strategy, which is time-consuming and requires a large-scale dataset. However, large-scale datasets are difficult to obtain. Here, we propose a self-supervised zero-shot dehazing network (SZDNet) based on dark channel prior, which uses a hazy image generated from the output dehazed image as a pseudo-label to supervise the optimization process of the network.
View Article and Find Full Text PDFPrescribed-time consensus tracking for second-order nonlinear multiagent systems (MASs) with the unknown nonlinear dynamics satisfying a time-varying Lipschitz growth rate is investigated in this article. A time-varying function is introduced as a part of the controller gains, and it plays an important role in overcoming the rapid growth of nonlinear terms and in ensuring that the consensus can be achieved in a preassigned time. An integral sliding-mode control protocol, which forces the system trajectory to move on to the defined sliding manifold at the initial moment, is proposed for solving the prescribed-time consensus tracking problem of leader-following MASs with disturbances.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2022
Cluster synchronization means that all multiagents are divided into different clusters according to the equations or roles of nodes in a complex network, and by designing an appropriate algorithm, each cluster can achieve synchronization to a certain value or an isolated node. However, the synchronization values between different clusters are different. With a feedback controller based on the calculation of the control input value and a trigger condition leading to the updating instants, this article introduces the trigger mechanism and designs a new data sampling strategy to achieve cluster synchronization of the coupled neural networks (CNNs), which reduces the number of updates of the controller, thereby reducing unnecessary waste of limited resources.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
November 2021
In this article, the cluster synchronization problem for a class of the nonlinearly coupled delayed neural networks (NNs) in both finite- and fixed-time cases are investigated. Based on the Lyapunov stability theory and pinning control strategy, some criteria are provided to ensure the cluster synchronization of the nonlinearly coupled delayed NNs in both finite-and fixed-time aspects. Then, the settling time for stabilization that is dependent on the initial value and independent of the initial value is estimated, respectively.
View Article and Find Full Text PDFPrescribed-time Lag consensus, as a special case of prescribed-time cluster lag consensus, is first investigated. The task is to design a control protocol for each follower so that the multiagent system (MAS) achieves lag consensus in any specified time. To achieve this goal, we propose a new distributed controller, in which the control gains are designed as time-varying functions related to the pre-specified time.
View Article and Find Full Text PDFMarine object tracking is critical for search and rescue activities in the complex marine environment. However, the complex marine environment poses a huge challenge to the effect of tracking, such as the variability of light, the impact of sea waves, the occlusion of other ships, etc. Under these complex marine environmental factors, how to design an efficient dynamic visual tracker to make the results accurate, real time and robust is particularly important.
View Article and Find Full Text PDFThe discriminative correlation filters-based methods struggle deal with the problem of fast motion and heavy occlusion, the problem can severely degrade the performance of trackers, ultimately leading to tracking failures. In this paper, a novel Motion-Aware Correlation Filters (MACF) framework is proposed for online visual object tracking, where a motion-aware strategy based on joint instantaneous motion estimation Kalman filters is integrated into the Discriminative Correlation Filters (DCFs). The proposed motion-aware strategy is used to predict the possible region and scale of the target in the current frame by utilizing the previous estimated 3D motion information.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
May 2018
This paper deals with two types of the stability problem for the delayed neural networks driven by fractional Brownian noise (FBN). The existence and the uniqueness of the solution to the main system with respect to FBN are proved via fixed point theory. Based on Hilbert-Schmidt operator theory and analytic semigroup principle, the mild solution of the stochastic neural networks is obtained.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
December 2017
This paper discusses the problem of adaptive exponential synchronization in mean square for a new neural network model with the following features: 1) the noise is characterized by the Lévy process and the parameters of the model change in line with the Markovian process; 2) the master system is also disturbed by the same Lévy noise; and 3) there are multiple slave systems, and the state matrix of each slave system is an affine function of the state matrices of all slave systems. Based on the Lyapunov functional theory, the generalized Itô's formula, -matrix method, and the adaptive control technique, some criteria are established to ensure the adaptive exponential synchronization in the mean square of the master system and each slave system. Moreover, the update law of the control gain and the dynamic variation of the parameters of the slave systems are provided.
View Article and Find Full Text PDFThis paper investigates the finite-time master-slave synchronization and parameter identification problem for uncertain Lurie systems based on the finite-time stability theory and the adaptive control method. The finite-time master-slave synchronization means that the state of a slave system follows with that of a master system in finite time, which is more reasonable than the asymptotical synchronization in applications. The uncertainties include the unknown parameters and noise disturbances.
View Article and Find Full Text PDFIn this paper, the problem of adaptive synchronization is investigated for stochastic neural networks of neutral-type with Markovian switching parameters. Using the M-matrix approach and the stochastic analysis method, some sufficient conditions are obtained to ensure three kinds of adaptive synchronization for the stochastic neutral-type neural networks. These three kinds of adaptive synchronization include the almost sure asymptotical synchronization, exponential synchronization in p th moment and almost sure exponential synchronization.
View Article and Find Full Text PDFIn this paper, the robust exponential synchronization problem for a class of uncertain delayed master-slave dynamical system is investigated by using the adaptive control method. Different from some existing master-slave models, the considered master-slave system includes bounded unmodeled dynamics. In order to compensate the effect of unmodeled dynamics and effectively achieve synchronization, a novel adaptive controller with simple updated laws is proposed.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
April 2012
In this brief, the analysis problem of the mode and delay-dependent adaptive exponential synchronization in th moment is considered for stochastic delayed neural networks with Markovian switching. By utilizing a new nonnegative function and the -matrix approach, several sufficient conditions to ensure the mode and delay-dependent adaptive exponential synchronization in th moment for stochastic delayed neural networks are derived. Via the adaptive feedback control techniques, some suitable parameters update laws are found.
View Article and Find Full Text PDFThis brief investigates the problem of global exponential stability analysis for discrete recurrent neural networks with time-varying delays. In terms of linear matrix inequality (LMI) approach, a novel delay-dependent stability criterion is established for the considered recurrent neural networks via a new Lyapunov function. The obtained condition has less conservativeness and less number of variables than the existing ones.
View Article and Find Full Text PDF