Publications by authors named "Wun Chao"

Article Synopsis
  • Flowering time is crucial for canola breeding as it helps reduce heat stress and better utilize soil moisture, involving the internal circadian clock of plants.
  • The study used canola varieties 'Westar' and 'Surpass 400' to create a chromosome segment substitution line (CSSL) that contained a segment delaying flowering significantly compared to 'Westar.'
  • Four introgression lines (ILs) showed delayed flowering, indicating partial dominance in flowering time traits, and the flowering time locus was mapped to a 1 Mb region on chromosome A10.
View Article and Find Full Text PDF

Doubled haploid (DH) technology is a tool used to develop large numbers of inbred lines and increase the rate of genetic gain by shortening the breeding cycles. However, previous attempts to produce DH sunflower plants ( spp.) have resulted in limited success.

View Article and Find Full Text PDF

A new paradigm suggests weeds primarily reduce crop yield by altering crop developmental and physiological processes long before the weeds reduce resources through competition. Multiple studies have implicated stress response pathways are activated when crops such as maize are grown in close proximity with weeds during the first 4-8 weeks of growth-the point at which weeds have their greatest impact on subsequent crop yields. To date, these studies have mostly focused on the response of above-ground plant parts and have not examined the early signal transduction processes associated with maize root response to weeds.

View Article and Find Full Text PDF

Winter oilseed cash cover crops are gaining popularity in integrated weed management programs for suppressing weeds. A study was conducted at two field sites (Fargo, North Dakota, and Morris, Minnesota) to determine the freezing tolerance and weed-suppressing traits of winter canola/rapeseed ( L.) and winter camelina [ (L.

View Article and Find Full Text PDF

Homozygosity mapping is an effective tool for detecting genomic regions responsible for a given trait when the phenotype is controlled by a limited number of dominant or co-dominant loci. Freezing tolerance is a major attribute in agricultural crops such as camelina. Previous studies indicated that freezing tolerance differences between a tolerant (Joelle) and susceptible (CO46) variety of camelina were controlled by a small number of dominant or co-dominant genes.

View Article and Find Full Text PDF

Maize seedlings contain high amounts of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and the effect of DIMBOA is directly associated with multiple insect-resistance against insect pests such as Asian corn borer and corn leaf aphids. Although numerous genetic loci for multiple insect-resistant traits have been identified, little is known about genetic controls regarding DIMBOA content. In this study, the best linear unbiased prediction (BLUP) values of DIMBOA content in two ecological environments across 310 maize inbred lines were calculated; and their phenotypic data and BLUP values were used for marker-trait association analysis.

View Article and Find Full Text PDF

Direct competition for resources is generally considered the primary mechanism for weed-induced yield loss. A re-evaluation of physiological evidence suggests weeds initially impact crop growth and development through resource-independent interference. We suggest weed perception by crops induce a shift in crop development, before resources become limited, which ultimately reduce crop yield, even if weeds are subsequently removed.

View Article and Find Full Text PDF

Maize is a cold-sensitive crop, and it exhibits severe retardation of growth and development when exposed to cold snaps during and right after seedling emergence. Although different agronomic, physiological, and molecular approaches have been tried to overcome the problems related to cold stress in recent years, the mechanisms causing cold resistance in maize are still unclear. Screening and breeding of varieties for cold resistance may be a sustainable option to boost maize production under low-temperature environments.

View Article and Find Full Text PDF

Winter biotypes of rapeseed ( L.) require a vernalization treatment to enter the reproductive phase and generally produce greater yields than spring rapeseed. To find genetic loci associated with freezing tolerance in rapeseed, we first performed genotyping-by-sequencing (GBS) on a diversity panel consisting of 222 rapeseed accessions originating primarily from Europe, which identified 69,554 high-quality single-nucleotide polymorphisms (SNPs).

View Article and Find Full Text PDF

Information concerning genes and signals regulating cold acclimation processes in plants is abundant; however, less is known about genes and signals regulating the deacclimation process. A population of primarily winter varieties was used to conduct a genome-wide association study and to compare the transcriptomes from two winter varieties showing time-dependent differences in response to cold acclimation and deacclimation treatments. These studies helped to identify loci, candidate genes, and signaling processes impacting deacclimation in .

View Article and Find Full Text PDF

Corn increases the number of differentially expressed genes and the intensity of differential gene expression in response to increasing weed density. Genes associated with kinase signaling and transport functions are upregulated by weeds. Genes associated with protein production are downregulated by weeds.

View Article and Find Full Text PDF

The nature of the vegetative to reproductive transition in the shoot apical meristem of summer annual cultivar CO46 and winter annual cultivar Joelle was confirmed by treating seedlings with or without 8 weeks of vernalization. True to their life cycle classification, Joelle required a vernalization treatment to induce bolting and flowering, whereas CO46 did not. In this study, whole genome sequence, RNAseq, and resequencing of PCR-amplified transcripts for a key floral repressor were used to better understand factors involved in the flowering habit of summer and winter biotypes at the molecular level.

View Article and Find Full Text PDF

Background: Meiosis is a specialized cell division critical for gamete production in the sexual reproduction of eukaryotes. It ensures genome integrity and generates genetic variability as well. The Rec8-like cohesin is a cohesion protein essential for orderly chromosome segregation in meiotic cell division.

View Article and Find Full Text PDF

Leafy spurge ( L.) is an invasive weed of North America and its perennial nature attributed to underground adventitious buds (UABs) that undergo seasonal cycles of para-, endo-, and ecodormancy. Recommended rates of glyphosate (∼1 kg ha) destroy aboveground shoots but plants still regenerate vegetatively; therefore, it is considered glyphosate-tolerant.

View Article and Find Full Text PDF

Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that maintains its perennial growth habit through generation of underground adventitious buds (UABs) on the crown and lateral roots. These UABs undergo seasonal phases of dormancy under natural conditions, namely para-, endo-, and ecodormancy in summer, fall, and winter, respectively.

View Article and Find Full Text PDF

Necrotrophic pathogens live and feed on dying tissue, but their interactions with plants are not well understood compared to biotrophic pathogens. The wheat gene confers susceptibility to strains of the necrotrophic pathogen that produce the SnTox1 protein. We report the positional cloning of , a member of the wall-associated kinase class of receptors, which are known to drive pathways for biotrophic pathogen resistance.

View Article and Find Full Text PDF

Background: Leafy spurge (Euphorbia esula L.) is an herbaceous weed that maintains a perennial growth pattern through seasonal production of abundant underground adventitious buds (UABs) on the crown and lateral roots. During the normal growing season, differentiation of bud to shoot growth is inhibited by physiological factors external to the affected structure; a phenomenon referred to as paradormancy.

View Article and Find Full Text PDF

Leafy spurge (Euphorbia esula L.) is a noxious perennial weed that produces underground adventitious buds, which are crucial for generating new vegetative shoots following periods of freezing temperatures or exposure to various control measures. It is also capable of flowering and producing seeds, but requires vernalization in some cases.

View Article and Find Full Text PDF

Reliable reference selection for the accurate quantification of gene expression under various experimental conditions is a crucial step in qRT-PCR normalization. To date, only a few housekeeping genes have been identified and used as reference genes in tea plant. The validity of those reference genes are not clear since their expression stabilities have not been rigorously examined.

View Article and Find Full Text PDF

Background: Leafy spurge (Euphorbia esula L.) is a herbaceous perennial weed and dormancy in both buds and seeds is an important survival mechanism. Bud dormancy in leafy spurge exhibits three well-defined phases of para-, endo- and ecodormancy; however, seed dormancy for leafy spurge is classified as physiological dormancy that requires after-ripening and alternating temperature for maximal germination.

View Article and Find Full Text PDF

The plant hormone ethylene is known to affect various developmental processes including dormancy and growth. Yet, little information is available about the role of ethylene during paradormancy release in underground adventitious buds of leafy spurge. In this study, we examined changes in ethylene evolution and the ethylene biosynthetic enzyme ACC oxidase following paradormancy release (growth induction).

View Article and Find Full Text PDF

Leafy spurge is a model for studying well-defined phases of dormancy in underground adventitious buds (UABs) of herbaceous perennial weeds, which is a primary factor facilitating their escape from conventional control measures. A 12-week ramp down in both temperature (27 → 10 °C) and photoperiod (16 → 8 h light) is required to induce a transition from para- to endo-dormancy in UABs of leafy spurge. To evaluate the effects of photoperiod and temperature on molecular networks of UABs during this transition, we compared global transcriptome data-sets obtained from leafy spurge exposed to a ramp down in both temperature and photoperiod (RDtp) versus a ramp down in temperature (RDt) alone.

View Article and Find Full Text PDF

Seed dormancy is an important stage in the life cycle of many non-domesticated plants, often characterized by the temporary failure to germinate under conditions that normally favor the process. Pre-treating dormant imbibed seeds at a constant temperate accelerated germination of leafy spurge seeds under alternating temperatures. However, dormant seeds will also germinate without a pre-treatment, albeit at a much slower rate, which gives rise to longer periods of imbibition before germination.

View Article and Find Full Text PDF