Publications by authors named "Wulf Blankenfeldt"

Griselimycin, a cyclic depsidecapeptide produced by Streptomyces griseus, is a promising lead inhibitor of the sliding clamp component of bacterial DNA polymerases (β-subunit of Escherichia coli DNA pol III). It was previously shown to inhibit the Mycobacterium tuberculosis β-clamp with remarkably high affinity and selectivity - the peptide lacks any interaction with the human sliding clamp. Here, we used a structural genomics approach to address the prospect of broader-spectrum inhibition, in particular of β-clamps from Gram-negative bacterial targets.

View Article and Find Full Text PDF

Although ethers are common in secondary natural products, they are an underrepresented functional group in primary metabolism. As such, there are comparably few enzymes capable of constructing ether bonds in a general fashion. However, such enzymes are highly sought after for synthetic applications as they typically operate with higher regioselectivity and under milder conditions than traditional organochemical approaches.

View Article and Find Full Text PDF

In the search for new antitubercular compounds, we leveraged target-directed dynamic combinatorial chemistry (tdDCC) as an efficient hit-identification method. In tdDCC, the target selects its own binders from a dynamic library generated , reducing the number of compounds that require synthesis and evaluation. We combined a total of 12 hydrazides and six aldehydes to generate 72 structurally diverse -acylhydrazones.

View Article and Find Full Text PDF

is an opportunistic human pathogen which can use host-derived L-carnitine as sole carbon and energy source. Recently, an L-carnitine transporter (Aci1347) and a specific monooxygense (CntA/CntB) for the intracellular cleavage of L-carnitine have been characterized. Subsequent conversion of the resulting malic semialdehyde into the central metabolite L-malate was hypothesized.

View Article and Find Full Text PDF

The phenazine pyocyanin is an important virulence factor of the pathogen Pseudomonas aeruginosa, which is on the WHO list of antibiotic resistant "priority pathogens". In this study the isomerase PhzF, a key bacterial enzyme of the pyocyanin biosynthetic pathway, was investigated as a pathoblocker target. The aim of the pathoblocker strategy is to reduce the virulence of the pathogen without killing it, thus preventing the rapid development of resistance.

View Article and Find Full Text PDF

Pseudomonas aeruginosa causes life-threatening infections especially in hospitalized patients and shows an increasing resistance to established antibiotics. A process known as quorum sensing (QS) enables the pathogen to collectively adapt to various environmental conditions. Disrupting this cell-to-cell communication machinery by small-molecular entities leads to a blockade of bacterial pathogenicity.

View Article and Find Full Text PDF

Stickland fermentation, the coupled oxidation and reduction of amino acid pairs, is a major pathway for obtaining energy in the nosocomial bacterium . D-proline is the preferred substrate for the reductive path, making it not only a key component of the general metabolism but also impacting on the expression of the clostridial toxins TcdA and TcdB. D-proline reduction is catalyzed by the proline reductase Prd, which belongs to the pyruvoyl-dependent enzymes.

View Article and Find Full Text PDF

Nature utilizes three distinct pathways to synthesize the essential enzyme cofactor heme. The coproporphyrin III-dependent pathway, predominantly present in , employs an oxygen-dependent coproporphyrinogen III oxidase (CgoX) that converts coproporphyrinogen III into coproporphyrin III. In this study, we report the bioinformatic-based identification of a gene called , encoding a putative oxygen-independent counterpart, which we propose to term CgoN, from () .

View Article and Find Full Text PDF

DNA polymerase III sliding clamp (DnaN) was recently validated as a new anti-tuberculosis target employing griselimycins. Three (2 S,4 R)-4-methylproline moieties of methylgriselimycin play significant roles in target binding and metabolic stability. Here, we identify the mycoplanecin biosynthetic gene cluster by genome mining using bait genes from the 4-methylproline pathway.

View Article and Find Full Text PDF

Background: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is known as a major receptor for oxidized low-density lipoproteins (oxLDL) and plays a significant role in the genesis of atherosclerosis. Recent research has shown its involvement in cancer, ischemic stroke, and diabetes. LOX-1 is a C-type lectin receptor and is involved in the activation of immune cells and inflammatory processes.

View Article and Find Full Text PDF

Legionella pneumophila, the causative agent of a life-threatening pneumonia, intracellularly replicates in a specialized compartment in lung macrophages, the Legionella-containing vacuole (LCV). Secreted proteins of the pathogen govern important steps in the intracellular life cycle including bacterial egress. Among these is the type II secreted PlaA which, together with PlaC and PlaD, belongs to the GDSL phospholipase family found in L.

View Article and Find Full Text PDF

The resolution of 3D electron diffraction (ED) data of small-molecule crystals is often relatively poor, due to either electron-beam radiation damage during data collection or poor crystallinity of the material. Direct methods, used as standard for crystal structure determination, are not applicable when the data resolution falls below the commonly accepted limit of 1.2 Å.

View Article and Find Full Text PDF

Salmonella enterica serovar Typhimurium manipulates cellular Rho GTPases for host cell invasion by effector protein translocation via the Type III Secretion System (T3SS). The two Guanine nucleotide exchange (GEF) mimicking factors SopE and -E2 and the inositol phosphate phosphatase (PiPase) SopB activate the Rho GTPases Rac1, Cdc42 and RhoA, thereby mediating bacterial invasion. S.

View Article and Find Full Text PDF

cis-Aconitate decarboxylase (ACOD1, IRG1) converts cis-aconitate to the immunomodulatory and antibacterial metabolite itaconate. Although the active site residues of human and mouse ACOD1 are identical, the mouse enzyme is about fivefold more active. Aiming to identify the cause of this difference, we mutated positions near the active site in human ACOD1 to the corresponding residues of mouse ACOD1 and measured resulting activities in vitro and in transfected cells.

View Article and Find Full Text PDF

Induction of type I interferon (IFN) gene expression is among the first lines of cellular defense a virus encounters during primary infection. We previously identified the tegument protein M35 of murine cytomegalovirus (MCMV) as an essential antagonist of this antiviral system, showing that M35 interferes with type I IFN induction downstream of pattern-recognition receptor (PRR) activation. Here, we report structural and mechanistic details of M35's function.

View Article and Find Full Text PDF

Pseudomonas aeruginosa (PA) is an opportunistic human pathogen, which is involved in a wide range of dangerous infections. It develops alarming resistances toward antibiotic treatment. Therefore, alternative strategies, which suppress pathogenicity or synergize with antibiotic treatments are in great need to combat these infections more effectively.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a major cause of nosocomial infections and also leads to severe exacerbations in cystic fibrosis or chronic obstructive pulmonary disease. Three intertwined quorum sensing systems control virulence of P. aeruginosa, with the rhl circuit playing the leading role in late and chronic infections.

View Article and Find Full Text PDF

Phytochelatins (PCs) are nonribosomal thiol-rich oligopeptides synthetized from glutathione (GSH) in a γ-glutamylcysteinyl transpeptidation reaction catalyzed by PC synthases (PCSs). Ubiquitous in plant and present in some invertebrates, PCSs are involved in metal detoxification and homeostasis. The PCS-like enzyme from the cyanobacterium sp.

View Article and Find Full Text PDF

A short and divergent route towards new derivatives of 2-(trifluoromethyl)pyridines as potent inverse agonists of the bacterial target PqsR against Pseudomonas aeruginosa (PA) infections is described. This Gram-negative pathogen causes severe nosocomial infections and common antibiotic treatment options are rendered ineffective due to resistance issues. Based on an earlier identified optimized hit, we conducted derivatization and rigidification attempts employing two central building blocks.

View Article and Find Full Text PDF

Box C/D ribonucleoprotein complexes are RNA-guided methyltransferases that methylate the ribose 2'-OH of RNA. The central 'guide RNA' has box C and D motifs at its ends, which are crucial for activity. Archaeal guide RNAs have a second box C'/D' motif pair that is also essential for function.

View Article and Find Full Text PDF

The non-canonical terpene cyclase AsR6 is responsible for the formation of 2E,6E,9E-humulene during the biosynthesis of the tropolone sesquiterpenoid (TS) xenovulene A. The structures of unliganded AsR6 and of AsR6 in complex with an in crystallo cyclized reaction product and thiolodiphosphate reveal a new farnesyl diphosphate binding motif that comprises a unique binuclear Mg -cluster and an essential K289 residue that is conserved in all humulene synthases involved in TS formation. Structure-based site-directed mutagenesis of AsR6 and its homologue EupR3 identify a single residue, L285/M261, that controls the production of either 2E,6E,9E- or 2Z,6E,9E-humulene.

View Article and Find Full Text PDF

Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) - a crucial transcriptional regulator serving major functions in PA virulence - can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry-driven hit-to-lead optimization and in-depth biological profiling of a new QSI generation is reported.

View Article and Find Full Text PDF

The virulence factor PlaB promotes lung colonization, tissue destruction, and intracellular replication of , the causative agent of Legionnaires' disease. It is a highly active phospholipase exposed at the bacterial surface and shows an extraordinary activation mechanism by tetramer deoligomerization. To unravel the molecular basis for enzyme activation and localization, we determined the crystal structure of PlaB in its tetrameric form.

View Article and Find Full Text PDF

encompasses a group of ubiquitous Gram-negative bacteria that includes numerous saprophytes as well as species that cause infections in animals, immunocompromised patients, and plants. Some species of produce colored, redox-active secondary metabolites called phenazines. Phenazines contribute to competitiveness, biofilm formation, and virulence in the opportunistic pathogen , but knowledge of their diversity, biosynthesis, and biological functions in is lacking.

View Article and Find Full Text PDF

ProA is a secreted zinc metalloprotease of Legionella pneumophila causing lung damage in animal models of Legionnaires' disease. Here we demonstrate that ProA promotes infection of human lung tissue explants (HLTEs) and dissect the contribution to cell type specific replication and extracellular virulence mechanisms. For the first time, we reveal that co-incubation of HLTEs with purified ProA causes a significant increase of the alveolar septal thickness.

View Article and Find Full Text PDF