ACS Appl Mater Interfaces
January 2023
Hydrogen isotope storage materials are of great significance for controlled nuclear fusion, which is promising to provide unlimited clean and dense energy. Conventional storage materials of micrometer-sized polycrystalline ZrCo alloys prepared by the smelting method suffer from slow kinetics, pulverization, disproportionation, and poor cycling stability. Here, we synthesize a honeycomb-structured ZrCo composed of highly crystalline submicrometer ZrCo units using electrospray deposition and magnesiothermic reduction.
View Article and Find Full Text PDFTo find an oxygen evolution reaction (OER) catalyst with satisfactory catalytic performance and affordable cost is of great importance to the development of many new energy devices. In this work, a simple and effective strategy was developed to synthesize a series of amorphous MoCo lamellar hydroxide through one-step chemical co-precipitation. Systematic investigations showed that different functional agents (2-methylimidazole, NaOH, NH OH) in the fabrication process resulted in different micromorphology of the catalyst, thus influencing its electrocatalytic performance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
Harvesting electromagnetic (EM) energy from the environment and converting it into useful micropower is a new and ideal way to eliminate EM radiation and while providing power for microelectronic devices. The key material of this technology is broadband, ultralight, and ultrathin EM-wave-absorbing materials, whose preparation remains challenging. Herein, a high magnetic field (HMF) strategy is proposed to prepare a biomass-derived CoFe/carbon fiber (CoFe/CF) composite, in which CoFe magnetic particles are aligned in CFs, creating magnetic coupling and fast electron transmission channels.
View Article and Find Full Text PDFAnisotropic Fe3O4 nanoparticle and a series of its graphene composites have been successfully prepared as high-frequency absorbers. The crystal structure, morphology and magnetic property of the samples were detailed characterized through X-ray diffractometer (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The high-frequency absorbing performance of the composites is evaluated within 2.
View Article and Find Full Text PDF