Publications by authors named "Wujun Zhu"

Online monitoring fatigue damage and remaining fatigue life (RFL) prediction of engineering structures are essential to ensure safety and reliability. A data-driven online prediction method based on nonlinear ultrasonic monitoring was developed to predict the RFL of the structures in real-time. Nonlinear ultrasonic parameters were obtained to monitoring the fatigue degradation.

View Article and Find Full Text PDF

Most imaging methods based on ultrasonic Lamb waves in structural health monitoring requires reference signals, recorded in the intact state. This paper focuses on a novel baseline-free method for damage localization using Lamb waves based on a hyperbolic algorithm. This method employs a special array with a relatively small number of transducers and only one branch of the hyperbola.

View Article and Find Full Text PDF

This article proposes an electromagnetic acoustic transducer (EMAT) for selectively improving the purity and amplitude of ultrasonic Lamb waves in non-ferromagnetic plates. The developed EMAT consists of a racetrack coil and a group of periodic permanent magnets (PPMs). Two-dimensional finite element simulations and experiments are implemented to analyze the working mechanism and performance of the PPM EMAT.

View Article and Find Full Text PDF

The combination of air-coupled ultrasonic testing (ACUT) and ultrasonic Lamb wave is featured with long-distance propagation and high sensitivity to discontinuities, which is a promising method for rapid and accurate inspection of plate-like materials and lightweighted structures. However, dispersive nature of Lamb wave, signal attenuation plus inevitable noises would lead to low signal-to-noise ratio (SNR). To address this problem, phase coded excitation and pulse compression technique are proposed in this paper to achieve higher SNR by over 10 dB in received signals.

View Article and Find Full Text PDF

Due to the dispersive and multimode natures, only nonlinear Lamb waves with exact phase-velocity matching were generally used in previous studies to evaluate the evenly distributed microstructural evolution in the incipient stage of material degradation, because of the cumulative generation of second harmonics, which was also found within a significant propagation distance for mode pair S0-s0 with quasi phase-velocity matching at low frequency. To explore the feasibility of fatigue damage evaluation by using this mode pair and fully utilize its unique merits, the cumulative second harmonic analysis was performed on aluminum alloy specimens with various material damage produced by the continuous low cycle fatigue tests. Similar to mode pair S1-s2 with exact phase-velocity matching, a mountain shape curve between the normalized acoustic nonlinearity parameter and the fatigue life was also achieved with the peak point at about 0.

View Article and Find Full Text PDF

The feasibility of fatigue damage evaluation has been investigated using nonlinear Lamb waves with group-velocity mismatching. To choose an efficient mode pair, a parameter is proposed to quantify the efficiency of cumulative second-harmonic generation (SHG) of Lamb waves based on the normal modal analysis. Experiments and simulations are performed to verify the proposed parameter, which demonstrates that whether the matching condition of group velocity is satisfied or not, the efficiency of cumulative SHG increases with the order of Lamb mode for the five low-order Lamb waves investigated.

View Article and Find Full Text PDF

Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that / wave amplitudes decrease with the increasing of load.

View Article and Find Full Text PDF

A nonlinear constitutive relationship was established to investigate nonlinear behaviors of ultrasonic wave propagation in plastically damaged media based on analyses of mixed dislocation evolution. Finite element simulations of longitudinal wave propagation in plastically deformed martensite stainless steel were performed based on the proposed nonlinear constitutive relationship, in which the contribution of mixed dislocation to acoustic nonlinearity was considered. The simulated results were validated by experimental measurements of plastically deformed 30Cr2Ni4MoV martensite stainless steels.

View Article and Find Full Text PDF

Objective: To investigate the morphological characteristics of the adult worms of Taenia saginata from four areas of Western China.

Methods: 42, 41, 7 and 18 integral worms of Taenia saginata were collected from Duyun and Congjiang of Guizhou Province, Wushi of Xinjiang, and Lhasa of Tibet respectively. The length of worms was measured and the segments were counted.

View Article and Find Full Text PDF

To study the pathological and histochemical characteristics of lesions in piglet livers infected with Taenia saginata asiatica (T. saginata asiatica) throughout the different stages, piglets were fed with eggs of T. saginata asiatica and raised in isolation in an animal center to establish the T.

View Article and Find Full Text PDF