The atomic-thick anticorrosion coating for copper (Cu) electrodes is essential for the miniaturisation in the semiconductor industry. Graphene has long been expected to be the ultimate anticorrosion material, however, its real anticorrosion performance is still under great controversy. Specifically, strong electronic couplings can limit the interfacial diffusion of corrosive molecules, whereas they can also promote the surficial galvanic corrosion.
View Article and Find Full Text PDFThe evolution of the physical properties of 2D material from monolayer limit to the bulk reveals unique consequences from dimension confinement and provides a distinct tuning knob for applications. Monolayer 1T'-phase transition metal dichalcogenides (1T'-TMDs) with ubiquitous quantum spin Hall (QSH) states are ideal 2D building blocks of various 3D topological phases. However, the stacking geometry has been previously limited to the bulk 1T'-WTe type.
View Article and Find Full Text PDFAdvancing the lithium-ion battery technology requires the understanding of electrochemical processes in electrode materials with high resolution, accuracy, and sensitivity. However, most techniques today are limited by their inability to separate the complex signals from slurry-coated composite electrodes. Here, we use a three-dimensional "Swiss-roll" microtubular electrode that is incorporated into a micrometer-sized lithium battery.
View Article and Find Full Text PDFSuperconductivity in topological kagome metals has recently received great research interests. Here, charge density wave (CDW) orders and the evolution of superconductivity under various pressures in CsV Sb single crystal with V kagome lattice are investigated. By using high-resolution scanning tunneling microscopy/spectroscopy (STM/STS), two CDW orders in CsV Sb are observed which correspond to 4a × 1a and 2a × 2a superlattices.
View Article and Find Full Text PDFIt has recently been proposed that combining chirality with topological band theory results in a totally new class of fermions. Understanding how these unconventional quasiparticles propagate and interact remains largely unexplored so far. Here, we use scanning tunneling microscopy to visualize the electronic properties of the prototypical chiral topological semimetal PdGa.
View Article and Find Full Text PDFMultifold degenerate points in the electronic structure of metals lead to exotic behaviors. These range from twofold and fourfold degenerate Weyl and Dirac points, respectively, to sixfold and eightfold degenerate points that are predicted to give rise, under modest magnetic fields or strain, to topological semimetallic behaviors. The present study shows that the nonsymmorphic compound PdSb hosts six-component fermions or sextuplets.
View Article and Find Full Text PDFThe band inversion in topological phase matters bring exotic physical properties such as the topologically protected surface states (TSS). They strongly influence the surface electronic structures of the materials and could serve as a good platform to gain insight into the surface reactions. Here we synthesized high-quality bulk single crystals of CoSnS that naturally hosts the band structure of a topological semimetal.
View Article and Find Full Text PDFWe show that the electronic structure of the low-energy bands in the small angle-twisted bilayer graphene consists of a series of semimetallic and topological phases. In particular, we are able to prove, using an approximate low-energy particle-hole symmetry, that the gapped set of bands that exist around all magic angles have a nontrivial topology stabilized by a magnetic symmetry, provided band gaps appear at fillings of ±4 electrons per moiré unit cell. The topological index is given as the winding number (a Z number) of the Wilson loop in the moiré Brillouin zone.
View Article and Find Full Text PDFConductivity, carrier mobility, and a suitable Gibbs free energy are important criteria that determine the performance of catalysts for a hydrogen evolution reaction (HER). However, it is a challenge to combine these factors into a single compound. Herein, we discover a superior electrocatalyst for a HER in the recently identified Dirac nodal arc semimetal PtSn .
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have so far been highlighted for their potential roles in catalysis, gas storage and separation. However, the realization of high electrical conductivity (>10 S cm) and magnetic ordering in MOFs will afford them new functions for spintronics, which remains relatively unexplored. Here, we demonstrate the synthesis of a two-dimensional MOF by solvothermal methods using perthiolated coronene as a ligand and planar iron-bis(dithiolene) as linkages enabling a full π-d conjugation.
View Article and Find Full Text PDFBismuth tellurohalides with Rashba-type spin splitting exhibit unique Fermi surface topology and are developed as promising thermoelectric materials. However, BiTeBr, which belongs to this class of materials, is rarely investigated in terms of the thermoelectric transport properties. In the study, polycrystalline bulk BiTeBr with intensive texture was synthesized via spark plasma sintering (SPS).
View Article and Find Full Text PDFTriply degenerate points (TDPs) in band structure of a crystal can generate novel TDP fermions without high-energy counterparts. Although identifying ideal TDP semimetals, which host clean TDP fermions around the Fermi level (E_{F}) without coexisting with other quasiparticles, is critical to explore the intrinsic properties of this new fermion, it is still a big challenge and has not been achieved up to now. Here, we disclose an effective approach to search for ideal TDP semimetals via selective band crossing between antibonding s and bonding p orbitals along a line in the momentum space with C_{3v} symmetry.
View Article and Find Full Text PDFWe report superconductive iridium pnictides BaIrX (X = As and P) with a filled skutterudite structure, demonstrating that Ba filling dramatically alters their electronic properties and induces a nonmetal-to-metal transition with increasing the Ba content x. The highest superconducting transition temperatures are 4.8 and 5.
View Article and Find Full Text PDFA pressure-induced topological quantum phase transition has been theoretically predicted for the semiconductor bismuth tellurohalide BiTeI with giant Rashba spin splitting. In this work, evolution of the electrical transport properties in BiTeI and BiTeBr is investigated under high pressure. The pressure-dependent resistivity in a wide temperature range passes through a minimum at around 3 GPa, indicating the predicted topological quantum phase transition in BiTeI.
View Article and Find Full Text PDFUsing extensive Monte Carlo simulations, a comprehensive investigation has been carried out on the phenomenon of chlorophyll fluorescence concentration quenching. Our results reveal that statistical aggregations of chlorophylls act mainly as trapping sites for excitation energy and lead to fluorescence quenching. Due to transition dipolar-dipolar interactions between the chlorophylls within a statistical aggregate, the associated oscillator strength changes in comparison to a monomer, and excited energy states show splitting.
View Article and Find Full Text PDFThe Fenna-Matthews-Oslon (FMO) light harvesting pigment-protein complex in green sulfur bacteria transfers the excitation energy from absorbed sunlight to the reaction center with almost 100% quantum efficiency. The protein-pigment coupling (part of the environmental effects) is believed to play an important role in determining excitation energy transfer pathways. To study the effect of environment on the electronic transitions in the FMO complex, especially by taking into account the newly discovered eighth extra pigment, we have employed hybrid quantum-mechanics/molecular-mechanics (QM/MM) methods in combination with molecular dynamics (MD) simulations.
View Article and Find Full Text PDF