Following severe spinal cord injury (SCI), dysregulated neuroinflammation causes neuronal and glial apoptosis, resulting in scar and cystic cavity formation during wound healing and ultimately the formation of an atrophic microenvironment that inhibits nerve regrowth. Because of this complex and dynamic pathophysiology, a systemic solution for scar- and cavity-free wound healing with microenvironment remodeling to promote nerve regrowth has rarely been explored. A one-step solution is proposed through a self-assembling, multifunctional hydrogel depot that punctually releases the anti-inflammatory drug methylprednisolone sodium succinate (MPSS) and growth factors (GFs) locally according to pathophysiology to repair severe SCI.
View Article and Find Full Text PDFSilica (SiO) nanoparticles (NPs) were synthesized by laser ablation method and were characterized by TEM and DLS techniques. Afterwards, their inhibition activity against carbonic anhydrase (CA) isoforms (CA I and CA II) was explored by experimental and theoretical analysis. Also, the protective effect of SiO NPs against HO-induced oxidative stress in alveolar epithelial cells (A549) were assessed by measurement of MTT, ROS level, CAT and SOD activity and GSH content.
View Article and Find Full Text PDFMiR-217 can function as an oncogene or a tumour suppressor gene depending on cell type. However, the function of miR-217 in lung cancer remains unclear to date. This study aims to evaluate the function of miR-217 in lung cancer and investigate its effect on the sensitivity of lung cancer cells to cisplatin.
View Article and Find Full Text PDF