The coadsorption of anionic and cationic pollutants on adsorbents holds considerable importance in the development of relevant removal technologies and the understanding of pollutant transport in complex environmental media. Herein, tungsten (W), an emerging contaminant, and nickel (Ni) were chosen as two differently charged inorganic pollutants to investigate their removal characteristics on a magnesium-aluminum layered double hydroxide (LDH) prepared via microwave radiation. In the single systems, the amount of adsorbed W on LDH was initially increased and then decreased with increasing initial W concentration.
View Article and Find Full Text PDFThe use of a resin to selectively separate thiomolybdate from a tungsten (W) feed solution is a well-known protocol for achieve high-purity W products; however, the regeneration of saturated resin is laborious. In this study, poly(diallyl dimethyl ammonium chloride) (PDADMA) was used to modify ultrasound-pretreated montmorillonite (Mt) for W and molybdenum (Mo) separation for the first time, and the resultant tetrathiomolybdate (MoS)-loaded composite was further tested to remove heavy metals instead of regeneration. Among the three variables of ultrasound pretreatment, that is, Mt concentration, ultrasound power, and treatment time, the Mt concentration exhibited the most significant influence followed by ultrasound power on the separation performance of W and Mo.
View Article and Find Full Text PDFInt J Environ Res Public Health
October 2022
Modification of aluminosilicate minerals using a RN-bearing organic modifier, through the formation of covalent bonds, is an applicable way to eliminate the modifier release and to maintain the ability to remove cationic pollutants. In this study, trimethyl [3-(trimethoxysilyl) propyl] ammonium chloride (TM) and/or dimethyl octadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMO) were used to graft three aluminosilicate minerals, including calcined kaolinite (Kaol), montmorillonite (Mt), and zeolite (Zeol), and the obtained composites were deployed to assess their performance in regard to ammonium (NH) and nitrate (NO) adsorption. Grafting of TM and/or DMO had little influence on the crystal structures of Kaol and Zeol, but it increased the interlayer distance of Mt due to the intercalation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
August 2022
Assisted with an organosilane, FeO@Phoslock composites with different constituents were synthesized to separate phosphate from aqueous solution. The experimental adsorption data of kinetics and isothermal studies by the composites were well fitted by pseudo-second order and Freundlich models, respectively, suggesting the chemical and heterogeneous adsorption process, i.e.
View Article and Find Full Text PDFThe coexistence of highly toxic chromium (Cr) and the emerging contaminant tungsten (W) in the soil adjacent to W mining areas is identified. Immobilization of W and/or Cr is vital for the safe utilization of contaminated soil. In this study, the cationic gemini surfactant (butane-1,4-bis(dodecyl dimethyl ammonium bromide)) and tetrachloroferrate (FeCl)-modified montmorillonite (FeOMt) was applied to investigate the retention performance of W and/or Cr in the soil.
View Article and Find Full Text PDFAlkyl quaternary ammonium-modified clay minerals, which are common environmentally friendly materials, have been widely studied and applied for the removal of pollutants. However, there are few reports on functionalizing the counterions to expand the application. In this study, the cationic gemini surfactant butane-1,4-bis(dodecyl dimethyl ammonium bromide) (gBDDA) and tetrachloroferrate (FeCl) are designed to modify montmorillonite (Mt), and the obtained FeCl/Gemini-Mt composite (FeOMt) is used for the removal of nitrate and/or phosphate from aqueous solution.
View Article and Find Full Text PDFPerchlorate (ClO) and pertechnetate (TcO) exhibit similar adsorption characteristics on alkyl quaternary ammonium-modified montmorillonite (Mt), and TcO normally coexists with Sr in radionuclide-contaminated water. In this study, hexadecyl pyridinium (HDPy)-modified Mt (OMt) was encapsulated in alginate beads to inhibit HDPy release and simultaneously immobilize ClO and Sr ions. The release of HDPy was remarkably reduced (78 times) from OMt after alginate encapsulation.
View Article and Find Full Text PDFThe anaerobic ammonium oxidation (anammox) process has gained much popularity in recent years following its success in nitrogen removal. However, not much has been reported on techniques to promote anammox bacteria immobilization and associated microbial community evolution. In this study, a novel upflow porous-plate anaerobic reactor (UPPAR) was developed and explored to promote biomass (anammox) retention and growth.
View Article and Find Full Text PDFTwo novel feedforward backpropagation Artificial Neural Networks (ANN)-based-models (8:N:1 and 7:N:1) combined with Box-Behnken design of experiments methodology was proposed and developed to model NH and Total Nitrogen (TN) removal within an upflow-sludge-bed (USB) reactor treating nitrogen-rich wastewater via Single-stage Nitrogen removal using Anammox and Partial nitritation (SNAP) process. ANN were developed by optimizing network architecture parameters via response surface methodology. Based on the goodness-of-fit standards, the proposed three-layered NH and TN removal ANN-based-models trained with Levenberg-Marquardt-algorithm demonstrated high-performance as computations exhibited smaller deviations-(±2.
View Article and Find Full Text PDFSingle-stage nitrogen removal by anammox/partial-nitritation (SNAP) process was proposed and explored in a packed-bed-EGSB reactor to treat nitrogen-rich wastewater. With dissolved oxygen (DO) maintained within 0.2-0.
View Article and Find Full Text PDFFroth flotation has been proved to be a promising approach for commercial scale harvesting of microalgae. However, all the surfactants used in the microalgae flotation harvesting process are conventional monomeric surfactants contain a single similar hydrophobic group in the molecule, which results in a low harvesting efficiency. In this work, a novel Gemini surfactant, N,N'-bis(cetyldimethyl)-1,4-butane diammonium dibromide (BCBD) was prepared, and originally recommended as a collector for froth flotation harvesting of Chlorella vulgaris from culture medium.
View Article and Find Full Text PDFButane-1,4-bis(dodecyl dimethyl ammonium bromide) (gBDDA) and dodecyl trimethyl ammonium bromide (DTMA) in same stoichiometric amounts were applied to modify montmorillonite (Mt) under microwave and ultrasound conditions. The composition and structure of products were obtained through multiple characterizations including XRD, FTIR, TG/DTG, SEM, TEM, and N adsorption/desorption measurements, and the adsorption performance of chromate and phenol on these products were also investigated. Intercalations of gBDDA and DTMA into interlayer space of Mt were observed, but the amount of anchored modifier on the external surface was larger for gBDDA compared with DTMA when the stoichiometric amount of modifier larger than 1.
View Article and Find Full Text PDF