Moiré superlattices in van der Waals heterostructures represent a highly tunable quantum system, attracting substantial interest in both many-body physics and device applications. However, the influence of the moiré potential on light-matter interactions at room temperature has remained largely unexplored. In our study, we demonstrate that the moiré potential in MoS/WSe heterobilayers facilitates the localization of interlayer exciton (IX) at room temperature.
View Article and Find Full Text PDFGetting 'stuck', literally and figuratively, is a common experience for autistic people. Literally 'stuck' means exhibiting limited response initiation due to immobility with tense muscles and inability to move. Figuratively 'stuck' means loneliness, passivity or captivity in activities that do not offer long-term satisfaction.
View Article and Find Full Text PDFBackground: Up until the present, pyrethroid-treated bed nets have been a key tool for vector control in the fight against malaria. A global system that sets standards and facilitates procurement has successfully driven down the price of these bed nets to enable more of them to be distributed. As a result of their mass rollout, malaria cases have been significantly reduced, but pyrethroid resistance is now widespread.
View Article and Find Full Text PDFThe two-dimensional material hexagonal boron nitride (hBN) hosts luminescent centres with emission energies of ∼2 eV which exhibit pronounced phonon sidebands. We investigate the microscopic origin of these luminescent centres by combining calculations with non-perturbative open quantum system theory to study the emission and absorption properties of 26 defect transitions. Comparing the calculated line shapes with experiments we narrow down the microscopic origin to three carbon-based defects: CC, CC, and VC.
View Article and Find Full Text PDFBeilstein J Nanotechnol
April 2023
Obtaining bound states in the continuum (BICs) in photonic crystals gives rise to the realization of resonances with high quality factors for lasing and nonlinear applications. For BIC cavities in finite-size photonic crystals, the bulk resonance band turns into discrete modes with different mode profiles and radiation patterns. Here, photonic-crystal BIC cavities encircled by the photonic bandgap of lateral heterostructures are designed.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2023
The quantum optics of metamaterials starts with the question of whether the same effective-medium theories apply as in classical optics. In general, the answer is negative. For active plasmonics but also for some passive metamaterials, we show that an additional effective-medium parameter is indispensable besides the effective index, namely, the effective noise-photon distribution.
View Article and Find Full Text PDFWe present a model study to estimate the sensitivity of the optical absorption of multilayered graphene structure to the subnanometer interlayer separation. Starting from a transfer-matrix formalism we derive semi-analytical expressions for the far-field observables. Neglecting the interlayer separation, results in upper bounds to the absorption of 50% for real-valued sheet conductivities, exactly the value needed for coherent perfect absorption (CPA), while for complex-valued conductivities we identify upper bounds that are always lower.
View Article and Find Full Text PDFNear-field microscopy allows for visualization of both the amplitude and phase of surface plasmon polaritons (SPPs). However, their quantitative characterization in a reflection configuration is challenging due to complex wave patterns arising from the interference between several excitation channels. Here, we present near-field measurements of SPPs on large monocrystalline gold platelets in the visible.
View Article and Find Full Text PDFThe electrostatic theory of surface magnetoplasmons on a semi-infinite magnetized electron gas is generalized to mixed Faraday-Voigt configurations. We analyze a mixed Faraday-Voigt type of electrostatic surface waves that is strongly direction-dependent, and may be realized on narrow-gap semiconductors in the THz regime. A general expression for the dispersion relation is presented, with its dependence on the magnitude and orientation of the applied magnetic field.
View Article and Find Full Text PDFLuminescent centers in the two-dimensional material hexagonal boron nitride have the potential to enable quantum applications at room temperature. To be used for applications, it is crucial to generate these centers in a controlled manner and to identify their microscopic nature. Here, we present a method inspired by irradiation engineering with oxygen atoms.
View Article and Find Full Text PDFBased on a rate equation model for single-mode two-level lasers, two algorithms for stochastically simulating the dynamics and steady-state behaviour of micro- and nanolasers are described in detail. Both methods lead to steady-state photon numbers and statistics characteristic of lasers, but one of the algorithms is shown to be significantly more efficient. This algorithm, known as Gillespie's first reaction method (FRM), gives up to a thousandfold reduction in computation time compared to earlier algorithms, while also circumventing numerical issues regarding time-increment size and ordering of events.
View Article and Find Full Text PDFIntersexual dominance relations are important for female mammals, because of their consequences for accessing food and for the degree of sexual control females experience from males. Female mammals are usually considered to rank below males in the dominance hierarchy, because of their typical physical inferiority. Yet, in some groups or species, females are nonetheless dominant over some males (partial female dominance).
View Article and Find Full Text PDFWe analytically calculate the optical emission spectrum of nanolasers and nano-LEDs based on a model of many incoherently pumped two-level emitters in a cavity. At low pump rates, we find two peaks in the spectrum for large coupling strengths and numbers of emitters. We interpret the double-peaked spectrum as a signature of collective Rabi splitting, and discuss the difference between the splitting of the spectrum and the existence of two eigenmodes.
View Article and Find Full Text PDFTwo-dimensional materials supporting deep-subwavelength plasmonic modes can also exhibit strong magneto-optical responses. Here, we theoretically investigate magnetoplasmons (MPs) in monolayer black phosphorus (BP) structures under moderate static magnetic fields. We consider three different structures, namely, a continuous BP monolayer, an edge formed by a semi-infinite sheet, and finally, a triangular wedge configuration.
View Article and Find Full Text PDFMolecular spontaneous emission and fluorescence depend strongly on the emitter local environment. Plasmonic nanoparticles provide excellent templates for tailoring fluorophore emission, as they exhibit potential for both fluorescence enhancement and quenching, depending on emitter positioning in the nanoparticle vicinity. Here we explore the influence of hitherto disregarded nonclassical effects on the description of emitter-plasmon hybrids, focusing on the roles of the metal nonlocal response and especially size-dependent plasmon damping.
View Article and Find Full Text PDFContrary to classical predictions, the optical response of few-nm plasmonic particles depends on particle size due to effects such as nonlocality and electron spill-out. Ensembles of such nanoparticles are therefore expected to exhibit a nonclassical inhomogeneous spectral broadening due to size distribution. For a normal distribution of free-electron nanoparticles, and within the simple nonlocal hydrodynamic Drude model, both the nonlocal blueshift and the plasmon linewidth are shown to be considerably affected by ensemble averaging.
View Article and Find Full Text PDFCooperation based on mutual investments can occur between unrelated individuals when they are engaged in repeated interactions. Individuals then need to use a conditional strategy to deter their interaction partners from defecting. Responding to defection such that the future payoff of a defector is reduced relative to cooperating with it is called a partner control mechanism.
View Article and Find Full Text PDFNonlocal optical response is one of the emerging effects on the nanoscale for particles made of metals or doped semiconductors. Here we classify and compare both scalar and tensorial nonlocal response models. In the latter case the nonlocality can stem from either the longitudinal response, the transverse response, or both.
View Article and Find Full Text PDFElectron energy-loss spectroscopy can be used for detailed spatial and spectral characterization of optical excitations in metal nanoparticles. In previous electron energy-loss experiments on silver nanoparticles with radii smaller than 20 nm, only the dipolar surface plasmon resonance was assumed to play a role. Here, applying electron energy-loss spectroscopy to individual silver nanoparticles encapsulated in silicon nitride, we observe besides the usual dipole resonance an additional surface plasmon resonance corresponding to higher angular momenta for nanoparticle radii as small as 4 nm.
View Article and Find Full Text PDFQuantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all.
View Article and Find Full Text PDFThe standard hydrodynamic Drude model with hard-wall boundary conditions can give accurate quantitative predictions for the optical response of noble-metal nanoparticles. However, it is less accurate for other metallic nanosystems, where surface effects due to electron density spill-out in free space cannot be neglected. Here we address the fundamental question whether the description of surface effects in plasmonics necessarily requires a fully quantum-mechanical ab initio approach.
View Article and Find Full Text PDFThis review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model.
View Article and Find Full Text PDFIn classical electrodynamics, nanostructured graphene is commonly modeled by the computationally demanding problem of a three-dimensional conducting film of atomic-scale thickness. Here, we propose an efficient alternative two-dimensional electrostatic approach where all calculation procedures are restricted to the graphene sheet. Furthermore, to explore possible quantum effects, we perform tight-binding calculations, adopting a random-phase approximation.
View Article and Find Full Text PDF