Pangenomes are collections of annotated genome sequences of multiple individuals of a species. The structural variants uncovered by these datasets are a major asset to genetic analysis in crop plants. Here we report a pangenome of barley comprising long-read sequence assemblies of 76 wild and domesticated genomes and short-read sequence data of 1,315 genotypes.
View Article and Find Full Text PDFSQUAMOSA promoter binding-like proteins (SPLs) are important transcription factors that influence growth phase transition and reproduction in plants. SPLs are targeted by miR156 but the SPL/miR156 module is completely unknown in oat. We identified 28 oat SPL genes (AsSPLs) distributed across all 21 oat chromosomes except for 4C and 6D.
View Article and Find Full Text PDFThree independent experiments with different genetic backgrounds mapped the resistance gene Pm7 in the oat genome to the distal part of the long arm of chromosome 5D. Resistance of oat to Blumeria graminis DC. f.
View Article and Find Full Text PDFCultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products.
View Article and Find Full Text PDFCultivated oat (Avena sativa L.) is an important cereal grown worldwide due to its multifunctional uses for animal feed and human food. Oat has lagged behind other cereals in the genetic and genomic studies attributed to its large and complex genomes.
View Article and Find Full Text PDFComparative sequence analysis was used to design a SNP marker that aided in the identification of new sources of oat stem rust resistance. New races of Puccinia graminis f. sp.
View Article and Find Full Text PDFBarley (Hordeum vulgare L.) is one of the most important global crops. The six-row barley cultivar Morex reference genome has been used by the barley research community worldwide.
View Article and Find Full Text PDFIdentifying mechanisms and pathways involved in gene-environment interplay and phenotypic plasticity is a long-standing challenge. It is highly desirable to establish an integrated framework with an environmental dimension for complex trait dissection and prediction. A critical step is to identify an environmental index that is both biologically relevant and estimable for new environments.
View Article and Find Full Text PDFFusarium langsethiae is a symptomless pathogen of oat panicles that produces T-2 and HT-2 mycotoxins, two of the most potent trichothecenes produced by Fusarium fungi in cereals. In the last few years, the levels of these mycotoxin in oat grain has increased and the European commission have already recommended a maximum level for of 1000 μg kg for unprocessed oat for human consumption. The optimal and most sustainable way of combating infection and mycotoxin contamination is by releasing resistant oat varieties.
View Article and Find Full Text PDFGenotyping-by-sequencing (GBS)-derived molecular markers reveal the distinct genetic population structure and relatively narrow genetic diversity of Chinese hulless oat landraces. Four markers linked to the naked grain gene (N1) are identified by genome-wide association study (GWAS). Interest in hulless oat (Avena sativa ssp.
View Article and Find Full Text PDFKey message: Several AC Proteus derived genomic regions (QTLs, SNPs) have been identified which may prove useful for further development of high yielding high protein cultivars and allele-specific marker developments. High seed protein content is a trait which is typically difficult to introgress into soybean without an accompanying reduction in seed yield. In a previous study, 'AC Proteus' was used as a high protein source and was found to produce populations that did not exhibit the typical association between high protein and low yield.
View Article and Find Full Text PDFWe adapted and tested a Rapture assay as an enhancement of genotyping-by-sequencing (GBS) in oat (Avena sativa). This assay was based on an additional bait-based capture of specific DNA fragments representing approximately 10,000 loci within the enzyme-based complexity reduction provided by GBS. By increasing the specificity of GBS to include only those fragments that provided effective polymorphic markers, it was possible to achieve deeper sequence coverage of target markers, while simultaneously sequencing a greater number of samples on a single unit of next-generation sequencing.
View Article and Find Full Text PDFThe genus Avena (oats) contains diploid, tetraploid and hexaploid species that evolved through hybridization and polyploidization. Four genome types (named A through D) are generally recognized. We used GBS markers to construct linkage maps of A genome diploid (Avena strigosa x A.
View Article and Find Full Text PDFHexaploid oat ( L., 2 = 6 = 42) is a member of the Poaceae family and has a large genome (∼12.5 Gb) containing 21 chromosome pairs from three ancestral genomes.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1186/s13068-015-0415-8.].
View Article and Find Full Text PDFGenome size is an indicator of evolutionary distance and a metric for genome characterization. Here, we report accurate estimates of genome size in 99 accessions from 26 species of Avena. We demonstrate that the average genome size of C genome diploid species (2C = 10.
View Article and Find Full Text PDF