γ-aminobutyric acid can be produced by a one-step enzymatic reaction catalyzed by glutamic acid decarboxylase. The reaction system is simple and environmentally friendly. However, the majority of GAD enzymes catalyze the reaction under acidic pH at a relatively narrow range.
View Article and Find Full Text PDFOn-surface synthesis (OSS) involving relatively high energy barriers remains challenging due to a typical dilemma: firm molecular anchor is required to prevent molecular desorption upon the reaction, whereas sufficient lateral mobility is crucial for subsequent coupling and assembly. By locking the molecular precursors on the substrate then unlocking them during the reaction, we present a strategy to address this challenge. High-yield synthesis based on well-defined decarboxylation, intermediate transition, and hexamerization is demonstrated, resulting in an extended and ordered network exclusively composed of the newly synthesized macrocyclic compound.
View Article and Find Full Text PDFChemical reactions that convert sp to sp hybridization have been demonstrated to be a fascinating yet challenging route to functionalize graphene. So far it has not been possible to precisely control the reaction sites nor their lateral order at the atomic/molecular scale. The application prospects have been limited for reactions that require long soaking, heating, electric pulses or probe-tip press.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
June 2020
Activating transcription factor 4 (ATF4) promotes bone formation in human bone marrow mesenchymal stem cells. However, the underlying mechanisms of ATF4 in high glucose-induced injury of osteoblast still remain unclear. Small interfering RNA and plasmid targeting ATF4 were used to transfect MC3T3-E1 cells to knock down and overexpress ATF4 using Lipofectamin 3000.
View Article and Find Full Text PDFBackground: Neutrophil-to-lymphocyte ratio (NLR) has been used to predict the prognosis of patients with sepsis with inconsistent results. This meta-analysis aimed to clarify the prognostic value of NLR in patients with sepsis.
Methods: A comprehensive literature search for relevant studies, published prior to March 2019, was conducted using PubMed, Web of Science, and the China National Knowledge.
Suppressing the formation of lithium (Li) dendrites is central to implementing Li-metal anode, which has gained growing attention due to its ultrahigh specific capacity and low redox potential. Here, a novel approach is adopted to deposit Li-metal within a rigid three-dimensional (3D) carbon paper (3DCP) network, which consists of a cross-link framework of carbon fibers and graphene nanosheets (GNs). This unique structure yields a uniform distribution of Li-nuclei during the preliminary stage of Li-plating and the formation of a stable solid-electrolyte interface.
View Article and Find Full Text PDF