Publications by authors named "Wu-Ying Chu"

Article Synopsis
  • Muscle in aquatic animals, like Chinese soft-shelled turtles, can get infected by bacteria and fungi, which harms their nutritional quality and health.
  • The study found that infections with Proteus vulgaris and Elizabethkingia meningoseptica significantly altered muscle nutrition and structure, while also affecting oxidative stress and autophagy processes.
  • Treatment with N-acetylcysteine helped to lower oxidative stress and boosted antioxidant enzyme activity, suggesting it may mitigate some harmful effects of pathogen infection on muscle tissue.
View Article and Find Full Text PDF

Skeletal muscle atrophy results from fasting, disuse and other systemic diseases. Muscle atrophy is associated with increased muscle protein degradation via the Ubiquitin proteasome system (UPS). The Ubiquitin Specific Proteases (USPs), also known as deubiquitinating enzymes, regulates a wide variety of cellular processes in skeletal muscle.

View Article and Find Full Text PDF

Fish myotomes are comprised of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. Although the expression profile properties in fast and slow muscle fibers had been investigated at the mRNA levels, a comprehensive analysis at proteomic and microRNA transcriptomic levels is limited. In the present study, we first systematically compared the proteomic and microRNA transcriptome of the slow and fast muscles of Chinese perch (Siniperca chuatsi).

View Article and Find Full Text PDF

Background: Clock genes are considered to be the molecular core of biological clock in vertebrates and they are directly involved in the regulation of daily rhythms in vertebrate tissues such as skeletal muscles. Fish myotomes are composed of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. To date, there is no report on the characterization of the circadian clock system components of slow muscles in fish.

View Article and Find Full Text PDF

Myogenic regulatory factors (MRFs) are muscle-specific basic helix-loop-helix (bHLH) transcription factor that plays an essential role in regulating skeletal muscle development and growth. To investigate molecular characterization of Myf5 and compare the expressional patterns of the four MRFs, we cloned the Myf5 cDNA sequence and analyzed the MRFs expressional patterns using quantitative real-time polymerase chain reaction in Chinese perch (Siniperca chuatsi). Sequence analysis indicated that Chinese perch Myf5 and other MRFs shared a highly conserved bHLH domain with those of other vertebrates.

View Article and Find Full Text PDF

Real-time quantitative reverse transcription PCR (RT-qPCR) is one of the most effective and sensitive techniques in gene expression assay, for which selection of reference genes is a prerequisite. In teleost species, such as Chinese perch, the expression profiling of miRNAs as reference genes for RT-qPCR has not been intensively studied. In the present study, the expression profiles of six miRNAs (miR-101a, miR-146a, miR-22a, miR-23a, miR-26a and let-7a) and one small nuclear RNA (U6) were assayed with RT-qPCR in different adult tissues, developmental stages and growth conditions of Chinese perch, Siniperca chuatsi.

View Article and Find Full Text PDF

The grass carp (Ctenopharyngodon idella) is one of the most important cultivated fish species in China. Mounting evidences suggests that microRNAs (miRNAs) may be key regulators of skeletal muscle among the grass carp, but the knowledge of the identity of myogenic miRNAs and role of miRNAs during skeletal muscle anabolic state remains limited. In the present study, we choose 8 miRNAs previously reported to act as muscle growth-related miRNAs for fasting-refeeding research.

View Article and Find Full Text PDF

Abstract The extant freshwater sinipercids represent a group of 12 species and they are endemic to East Asia. In this study, we cloned and sequenced the complete mitochondrial DNA of Siniperca obscura from the Lijiang River. The size of the complete mitochondrial genome is 16,492 bp.

View Article and Find Full Text PDF

Sinocyclocheilus furcodorsalis, a typical cavefish, has evolved some striking characters, for example loss of its eyes and reduction in melanin pigmentation, and can serve as a good model system in evolutionary adaptation developmental mechanisms. So we cloned the complete mitochondrial DNA of S. furcodorsalis (16,581 bp), which is similar to those reported from other fish mitochondrial genomes, containing 37 genes (13 protein-coding genes, 2 ribosomal RNAs, and 22 transfer RNAs) and a major noncoding control region.

View Article and Find Full Text PDF

The sinipercids are a group of 12 species of freshwater percoid fish endemic to East Asia and their phylogenetic placements have perplexed generations of taxonomists. We cloned and sequenced the complete mitochondrial DNA (mtDNA) of three sinipercid fishes (Siniperca chuatsi, S. kneri, and S.

View Article and Find Full Text PDF

At present, transcription analysis of gene expression commonly uses housekeeping genes as control for normalization. In this study, the expression levels of three housekeeping genes including GAPDH, beta-actin, and 18S rRNA in six tissues and five developmental stages of the Mandarin fish Siniperca chuatsi were assayed with quantitative real-time PCR (qPCR). Differences in expression levels were analyzed using geNorm program.

View Article and Find Full Text PDF