A collection of luminescent metal complexes have been widely used as oxygen probes in the biomedical field. However, single intensity-based detection approach usually suffered from errors caused by the signal heterogeneity or fluctuation of the optoelectronic system. In this work, respective ruthenium (II) and terbium (III) complexes were chosen to coordinate a bipyridine-branched copolymer, so that to produce oxygen-sensitive metallopolymer (Ru-Poly) and oxygen-insensitive metallopolymer (Tb-Poly).
View Article and Find Full Text PDFMetal complex-based luminescent oxygen nanosensors have been intensively studied for biomedical applications. In terms of monitoring dynamics of intracellular oxygen, however, high-quality nanosensors are still badly needed, because of stringent requirements on stability, biocompatibility and luminescence intensity, aside from oxygen sensitivity. In this paper, we reported a type of highly luminescent and stable oxygen nanosensors prepared from metallopolymer.
View Article and Find Full Text PDF