Publications by authors named "Wu-Xi Lin"

Color centers in silicon carbide (SiC) offer exciting possibilities for quantum information processing. However, the challenge of ionization during optical manipulation leads to charge variations, hampering the efficacy of spin-photon interfaces. Recent research predicted that modified divacancy color centers can stabilize their charge states, resisting photoionization.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of Prussian blue nanoparticles (PB NPs) on rice plants, revealing their phytotoxic impact on growth, particularly decreasing plant height and biomass.
  • PB NPs were found to be taken up by the roots, transported to the shoots, but mostly retained in the roots, where they triggered structural remodeling in root cell walls to block further uptake.
  • The research uncovers that PB NPs stimulate specific defense mechanisms in plants, like enhancing pectin methylesterase activity and forming a protective Si-hemicellulose complex, which suggests new strategies for plants to counteract nanoparticle stress.
View Article and Find Full Text PDF
Article Synopsis
  • Single-atom manganese-doped carbon nitride (SA-Mn-CN) nanozymes are developed and characterized for use in advanced water treatment, exhibiting high catalytic activities.
  • The SA-Mn-CN integrated into a polyvinylidene fluoride (PVDF) membrane shows enhanced water permeability and effectively removes over 92% of organic micropollutants within one minute, while also inactivating bacteria.
  • This innovative system outperforms traditional advanced oxidation processes in terms of efficiency, stability, and reusability, paving the way for sustainable wastewater treatment solutions.
View Article and Find Full Text PDF

In recent years, photothermal-assisted Fenton-like degradation of organic pollutants has become a prominent green method in environmental pollution control. Nevertheless, the design of suitable catalysts remains a significant challenge for this approach. Herein, zeolite-imidazolate framework-derived CoMn bimetallic nanoparticles embedded in hollow carbon nanofibers (CoMnHCF) have been developed as a photothermal nano-confinement reactor with multiple active sites to enhance reaction performance and promote peroxymonosulfate (PMS) activation.

View Article and Find Full Text PDF

The current work aimed to elucidate the potential applications of the carbonaceous gels and assess the in vitro cytotoxicity of these gels when suspended in a culture medium and exposed to bone marrow mesenchymal stem cells. Cellular viability, cell cycle distribution, apoptotic cell death, and mitochondrial membrane potential in bone marrow mesenchymal stem cells co-incubated with different concentrations of carbonaceous gels (0.1, 1, 10, 50, and 100 μg/mL) were evaluated.

View Article and Find Full Text PDF

Cadmium (Cd)-contamination impairs biological nitrogen fixation in legumes (BNF), threatening global food security. Innovative strategies to enhance BNF and improve plant resistance to Cd are therefore crucial. This study investigates the effects of graphitic carbon nitride nanosheets (g-CN NSs) on soybean (Glycine max L.

View Article and Find Full Text PDF

Zeolite imidazole frameworks (ZIFs), a class of the metal organic framework, have been extensively studied in environmental applications. However, their environmental fate and potential ecological impact on plants remain unknown. Here, we investigated the phytotoxicity, transformation, and bioaccumulation processes of two typical ZIFs (ZIF-8 and ZIF-67) in rice (Oryza sativa L.

View Article and Find Full Text PDF

Background: Hepatic encephalopathy (HE) is closely associated with inflammatory responses. However, as a crucial regulator of the immune and inflammatory responses, the role of leucine-rich repeat kinase 2 (LRRK2) in the pathogenesis of HE remains unraveled. Herein, we investigated this issue in thioacetamide (TAA)-induced HE following acute liver failure (ALF).

View Article and Find Full Text PDF

Cadmium (Cd) pollution poses a serious threat to plant growth and yield. Nanomaterials have shown great application potential for alleviation of Cd toxicity to plants. In this study, we applied graphitic carbon nitride nanosheets (g-CN NSs) for alleviation of Cd-toxicity to soybean (Glycine max L.

View Article and Find Full Text PDF

Industrial solid waste management and recycling are important to environmental sustainability. In this study, cobalt (Co) nanoparticles encapsulated in paint sludge-derived activated carbon (AC) were fabricated. The Co-AC possessed high conductivity, magnetic properties and abundant metal oxide impurities (TiAlSiO), which was applied as multifunctional catalyst for peroxymonosulfate (PMS) activation.

View Article and Find Full Text PDF

This paper summarizes recent studies identifying key qubit systems in silicon carbide (SiC) for quantum sensing of magnetic, electric fields, and temperature at the nano and microscale. The properties of colour centres in SiC, that can be used for quantum sensing, are reviewed with a focus on paramagnetic colour centres and their spin Hamiltonians describing Zeeman splitting, Stark effect, and hyperfine interactions. These properties are then mapped onto various methods for their initialization, control, and read-out.

View Article and Find Full Text PDF

Oriented generation of specific reactive oxygen species (ROS) has been challenging in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). In this work, we constructed a multifunctional catalyst composed of Ni NPs embedded in N-doped carbon nanotubes (NCNTs) with exposed Ni single-atom sites (Ni-NCNTs). The Ni-N single sites adjacent to the Ni NPs are more efficient for PMS adsorption and activation, resulting in enhanced production of singlet oxygen (O).

View Article and Find Full Text PDF

In photosynthesis, solar energy is harvested by photosensitizers, and then, the excited electrons transfer via a Z-Scheme mode to enzymatic catalytic centers to trigger redox reactions. Herein, we constructed a core-shell Z-scheme heterojunction of semiconductor@single-atom catalysts (SACs). The oxygen-vacancy-rich ZnO core and single-atom Co-N sites supported on nitrogen-rich carbon shell (SA-Co-CN) act as the photosensitizer and the enzyme-mimicking active centers, respectively.

View Article and Find Full Text PDF

Optically addressable spin defects in silicon carbide (SiC) have emerged as attractable platforms for various quantum technologies. However, the low photon count rate significantly limits their applications. We strongly enhanced the brightness by 7 times and spin-control strength by 14 times of single divacancy defects in 4H-SiC membranes using a surface plasmon generated by gold film coplanar waveguides.

View Article and Find Full Text PDF

Pressure-induced magnetic phase transitions are attracting interest as a means to detect superconducting behaviour at high pressures in diamond anvil cells, but determining the local magnetic properties of samples is a challenge due to the small volumes of sample chambers. Optically detected magnetic resonance of nitrogen vacancy centres in diamond has recently been used for the in situ detection of pressure-induced phase transitions. However, owing to their four orientation axes and temperature-dependent zero-field splitting, interpreting these optically detected magnetic resonance spectra remains challenging.

View Article and Find Full Text PDF

In recent years, spin defects in silicon carbide have become promising platforms for quantum sensing, quantum information processing and quantum networks. It has been shown that their spin coherence times can be dramatically extended with an external axial magnetic field. However, little is known about the effect of magnetic-angle-dependent coherence time, which is an essential complement to defect spin properties.

View Article and Find Full Text PDF

Spin defects in silicon carbide appear to be a promising tool for various quantum technologies, especially for quantum sensing. However, this technique has been used only at ambient pressure until now. Here, by combining this technique with diamond anvil cell, we systematically study the optical and spin properties of divacancy defects created at the surface of SiC at pressures up to 40 GPa.

View Article and Find Full Text PDF

Heterogeneous activation of peroxymonosulfate (PMS) is one of the most promising techniques for wastewater treatment. Herein, an ingenious system by coupling of photocatalysis and PMS activation was developed, using hollow-structured amorphous prussian blue (A-PB) decorated on graphitic carbon nitride (g-CN) as the catalyst. Degradation of bisphenol A (BPA) via the A-PB-g-CN mediated PMS activation under visible light (Vis) was systematically investigated.

View Article and Find Full Text PDF

Stable and recyclable catalysts are crucial to the peroxymonosulfate (PMS) based advanced oxidation process (AOPs) for wastewater treatment. Herein, nitrogen-rich carbon wrapped FeC (FeC@CN) on carbon felt (CF) substrate was synthesized by using Prussian blue (PB) loaded CF as the precursors. The obtained FeC@CN/CF catalyst was applied for degradation of bisphenol A (BPA) via the heterogeneous catalytic activation of PMS.

View Article and Find Full Text PDF

While molecular weight distribution (MWD) is one of the most important properties of soluble microbial products (SMPs), mechanisms underlying effects of MWD of SMPs on membrane fouling have not well unveiled. In this study, it was found that, the supernatant of sludge suspension in a membrane bioreactor (MBR) for wastewater treatment can be fractionated into a series of SMPs samples with different molecular weight (MW) fraction. The real gel sample mainly formed by the rejected SMPs on membrane surface had a high specific filtration resistance (SFR) of 1.

View Article and Find Full Text PDF

The development of low-cost, highly efficient and durable non-precious-metal (NPM) electrocatalysts for the oxygen reduction reaction (ORR) is of great significance. Herein, we report an ingenious two-step strategy for the fabrication of NPM electrocatalysts containing multifarious cobalt species embedded in nitrogen-rich nanocarbons (Co-N-C). Firstly, Co ions were fixed by coordination with 1H-Imidazo[4,5-f][1,10]phenanthroline (Hip), and secondly the Co-Hip precursor with abundant Co, C and N sources was subjected to calcination at various temperatures (700-900 °C).

View Article and Find Full Text PDF

New synthetic method toward carbon supported catalysts with improved performance is of great importance in direct alcohol fuel cells (DAFCs). Herein, onion-like nanocarbons (OLNCs) were fabricated by using cheap and readily available candle as the raw material. And a facile one-pot and surfactant-free solvothermal approach was developed for the fabrication of PtSn nanoparticles supported on the OLNCs.

View Article and Find Full Text PDF

As robust polymeric catalysts, graphitic carbon nitride (g-CN) has been known to have great application potential in environmental remediation. However, the mechanisms in the photo-assisted catalytic processes during the reduction or oxidation of pollutants are still difficult to discern and therefore not well studied. In this work, visible-assisted catalytic reduction of hexavalent chromium (Cr(VI)) or oxidation of sulfisoxazole (SIZ) by g-CN with the addition of formic acid (FA) or potassium peroxydisulfate (PS) were systematically investigated.

View Article and Find Full Text PDF

Nitrogen doped nanoporous activated carbon (N-NPAC) was prepared via the facile and effective KOH activation method using Zizania latifolia (ZL), a common Chinese aquatic vegetable, as the raw material. The biomass derived N-NPAC exhibited high content of nitrogen (18.4 at%), large surface area (1493.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiond851gcpblopu00uu4d8hdj0e6bvj3mb8): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once