Publications by authors named "Wu Xiaosong"

Lifting-correction is a technique to restore buildings experiencing uneven settlement, while ensuring the safety and integrity of the main structural system. This study was based on a real light-steel building structure and provided a detailed description of scenarios involving uneven settlement and the process of lifting and correction. Additionally, a sophisticated finite element (FE) model was established using the generic FE software ABAQUS, with refined material constitutive models to ensure the accuracy of simulation results.

View Article and Find Full Text PDF

Bio-inspired transistor synapses use solid electrolytes to achieve low-power operation and rich synaptic behaviors via ion diffusion and trapping. While these neuromorphic devices hold great promise, they still suffer from challenges such as high leakage currents and power consumption, electrolysis risk, and irreversible conductance changes due to long-range ion migrations and permanent ion trapping. In addition, their response to light is generally limited because of "exciton-polaron quenching", which restricts their potential in in-sensor neuromorphic visions.

View Article and Find Full Text PDF

Conventional security inks, generally directly printed on the data page surface, are vulnerable to counterfeiters, thereby raising the risk of chemical structural deciphering. In fact, polymer film-based data pages with customized patterns embedded within polymer matrix, rather than printed on the surface, emerge as a promising solution. Therefore, the key lies in developing fluorophores offering light dose-controlled fluorescent color inside polymer matrices.

View Article and Find Full Text PDF

It has been theoretically predicted that perturbation of the Berry curvature by electromagnetic fields gives rise to intrinsic nonlinear anomalous Hall effects that are independent of scattering. Two types of nonlinear anomalous Hall effects are expected. The electric nonlinear Hall effect has recently begun to receive attention, while very few studies are concerned with the magneto-nonlinear Hall effect.

View Article and Find Full Text PDF

Background: Pseudorabies virus (PRV) is one of the major viral pathogens leading to reproductive disorders in swine. However, little is known about the effects of PRV infection on porcine reproductive system. Ovarian granulosa cells are somatic cells surrounding oocytes in ovary and required for folliculogenesis.

View Article and Find Full Text PDF

Multiple myeloma (MM) is an incurable and recurrent malignancy characterized by abnormal plasma cell proliferation. There is an urgent need to develop effective drugs in MM. DCZ0825 is a small molecule compound derived from pterostilbene with direct anti-myeloma activity and indirect immune-killing effects though reversal of the immunosuppression.

View Article and Find Full Text PDF

Background: Multiple myeloma (MM), an incurable disease owing to drug resistance, requires safe and effective therapies. Norcantharidin (NCTD), an active ingredient in traditional Chinese medicines, possesses activity against different cancers. However, its toxicity and narrow treatment window limit its clinical application.

View Article and Find Full Text PDF

Multiple myeloma (MM) is characterized by excessive aggregation of B-cell-derived malignant plasma cells in the hematopoietic system of bone marrow. Previously, we synthesized an innovative molecule named dihydrocelastrol (DHCE) from celastrol, a triterpene purified from medicinal plant . Herein, we explore the therapeutic properties and latent signal transduction mechanism of DHCE action in bortezomib (BTZ)-resistant (BTZ-R) MM cells.

View Article and Find Full Text PDF

Background: Thyroid hormone receptor interacting protein 13 (Trip13) is an AAA-ATPase that regulates the assembly or disassembly protein complexes and mediates Double-strand breaks (DSBs) repair. Overexpression of Trip13 has been detected in many cancers and is associated with myeloma progression, disease relapse and poor prognosis inmultiple myeloma (MM).

Methods: We have identified a small molecular, TI17, through a parallel compound-centric approach, which specifically targets Trip13.

View Article and Find Full Text PDF

The most common neoplasm among adult lymphomas is diffuse large B-cell lymphoma (DLBCL), typically characterized by pain-free and progressive lymph node enlargement. Due to high heterogeneity of DLBCL, 30-40 % of patients are resistant to R-CHOP standard chemoimmunotherapy. DCZ0358 is a new compound designed and synthesized from berberine by our group and the molecular mechanism by which it inhibited DLBCL growth has attracted our widespread attention.

View Article and Find Full Text PDF

Adaptive optics systems for large-aperture solar telescopes, especially multiconjugate adaptive optics systems, suffer from a fundamental trade-off between wavefront sampling rate and sub-aperture resolution. We introduce an enhanced-resolution Shack-Hartmann wavefront sensing method that decouples sub-aperture resolution from the desired wavefront sampling rate. We experimentally verified the validity of this method.

View Article and Find Full Text PDF

Despite significant improvement in the prognosis of multiple myeloma (MM), the disease remains incurable; thus, more effective therapies are required. Ribonucleoside-diphosphate reductase subunit M2 (RRM2) is significantly associated with drug resistance, rapid relapse, and poor prognosis. Previously, we found that 4-hydroxysalicylanilide (osalmid), a specific inhibitor of RRM2, exhibits anti-MM activity in vitro, in vivo, and in human patients; however, the mechanism remains unclear.

View Article and Find Full Text PDF

Multiple myeloma (MM) remains incurable due to drug resistance. Ribosomal protein S3 (RPS3) has been identified as a non-Rel subunit of NF-κB. However, the detailed biological roles of RPS3 remain unclear.

View Article and Find Full Text PDF

The dielectric layer is crucial in regulating the overall performance of field-effect transistors (FETs), the key component in central processing units, sensors, and displays. Despite considerable efforts being devoted to developing high-permittivity (k) dielectrics, limited progress is made due to the inherent trade-off between dielectric constant and loss. Here, a solution is presented by designing a monodispersed disk-shaped Ce-Al-O-macrocycle as a dopant in polymer dielectrics.

View Article and Find Full Text PDF

The scaling of silicon-based transistors at sub-ten-nanometre technology nodes faces challenges such as interface imperfection and gate current leakage for an ultrathin silicon channel. For next-generation nanoelectronics, high-mobility two-dimensional (2D) layered semiconductors with an atomic thickness and dangling-bond-free surfaces are expected as channel materials to achieve smaller channel sizes, less interfacial scattering and more efficient gate-field penetration. However, further progress towards 2D electronics is hindered by factors such as the lack of a high dielectric constant (κ) dielectric with an atomically flat and dangling-bond-free surface.

View Article and Find Full Text PDF

Multiple myeloma (MM), the second most common haematological malignancy, is currently incurable because patients often develop multiple drug resistance and experience subsequent relapse of the disease. This study aims to identify a potential therapeutic agent that can counter bortezomib (BTZ) resistance in MM. DCZ0358, a novel alkaloid compound, is found to exert potent cytotoxic effects against BTZ-resistant MM cells and .

View Article and Find Full Text PDF

Diffuse-type gastric cancer (DGC) and intestinal-type gastric cancer (IGC) are the major histological types of gastric cancer (GC). The molecular mechanism underlying DGC and IGC differences are poorly understood. In this research, we carry out multilevel proteomic analyses, including proteome, phospho-proteome, and transcription factor (TF) activity profiles, of 196 cases covering DGC and IGC in Chinese patients.

View Article and Find Full Text PDF

In-sensor multi-task learning is not only the key merit of biological visions but also a primary goal of artificial-general-intelligence. However, traditional silicon-vision-chips suffer from large time/energy overheads. Further, training conventional deep-learning models is neither scalable nor affordable on edge-devices.

View Article and Find Full Text PDF

Placental function is vital to the fetal growth of sows, and resveratrol (RES) can protect cells against oxidative stress, which is one of the major factors impairing placental function. This study aimed to investigate the effect of dietary resveratrol (RES) on placental function and reproductive performance during late pregnancy in a sow model from the aspects of oxidative stress, insulin resistance, and gut microbiota. A total of 26 hybrid pregnant sows (Landrace × Yorkshire) with similar parity were randomly allocated into two groups ( = 13) and fed with a basal diet or a diet containing 200 mg/kg of resveratrol from day 85 of gestation until parturition.

View Article and Find Full Text PDF

Using smart photochromic and luminescent tissues in camouflage/cloaking of natural creatures has inspired efforts to develop synthetic stimuli-responsive materials for data encryption and anticounterfeiting. Although many optical data-encryption materials have been reported, they generally require only one or a simple combination of few stimuli for decryptions and rarely offer output corruptibility that prevents trial-and-error attacks. Here, we report a series of multiresponsive donor-acceptor Stenhouse adducts (DASAs) with unprecedented switching behavior and controlled reversibility via diamine conformational locking and substrate free-volume engineering and their capability of sequential logic encryption (SLE).

View Article and Find Full Text PDF

Superlattices-a periodic stacking of two-dimensional layers of two or more materials-provide a versatile scheme for engineering materials with tailored properties. Here we report an intrinsic heterodimensional superlattice consisting of alternating layers of two-dimensional vanadium disulfide (VS) and a one-dimensional vanadium sulfide (VS) chain array, deposited directly by chemical vapour deposition. This unique superlattice features an unconventional 1T stacking with a monoclinic unit cell of VS/VS layers identified by scanning transmission electron microscopy.

View Article and Find Full Text PDF

bark has been traditionally used as a Chinese medicine to attenuate stress, but the leaf, which is rich in polyphenols and polysaccharides, has been rarely used. This study aimed to investigate the effect of leaf extracts (EULEs) on oxidative stress and meat quality of broilers. A total of 252 broilers were randomly divided into 3 treatments and fed with a control basal diet (CON), or a diet containing 250 mg/kg or 1,000 mg/kg of EULE for 51 days.

View Article and Find Full Text PDF