Unlabelled: Mineral-organic matter-microbe interactions greatly impact the biogeochemical processes and biodiversity in soils. An increasing trend of particle size (PS) in mangrove soils has been observed because of the relative sea level rise. However, the impacts of PS increase on the microbial biogeochemical functions and carbon sink in the mineral-associated microcosms are exceedingly nebulous.
View Article and Find Full Text PDFSodium alginate (SA) emerges as a promising adsorbent for the remediation of heavy metal-polluted wastewater. However, the systematic investigations on how and the extent to which the various compositions in real water matrices impact its performance were essential but rare when considering its use. Here, we explored the effect of common environmental factors on Cu(II) adsorption by an as-synthesized SA-based hydrogel (SAH).
View Article and Find Full Text PDFMost adsorbents are currently restricted by their single function in pollutant removal from complex wastewater. Herein, we constructed a versatile chitosan-based adsorbent (MC-DA) by grafting amphoteric copolymers with high pH-responsiveness property, aiming at the removal of multiple ionic contaminants. Specifically, the surface charge and hydrophobicity/hydrophilicity of MC-DA can be finely tuned under different pH conditions.
View Article and Find Full Text PDFThe Yangtze River estuary (YRE) are strongly influenced by the Kuroshio and terrigenous input from rivers, leading to the formation of distinct water masses, however, there remains a limited understanding of the full extent of this influence. Here the variation of water masses and bacterial communities of 58 seawater samples from the YRE and its adjacent waters were investigated. Our findings suggested that there were 5 water masses in the studied area: Black stream (BS), coastal water in the East China Sea (CW), nearshore mixed water (NM), mixed water in the middle and deep layers of the East China Sea (MM), and deep water blocks in the middle of the East China Sea (DM).
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have shown great prospects in wastewater remediation. However, the easy aggregation, difficult separation and inferior reusability greatly limit their large-scale application. Herein, we proposed a facile, green and low-cost strategy to construct robust and stable MOF-based hydrogel beads (Fe-BTC-HBs) in a gram scale, and employed them to remove antibiotics from wastewater.
View Article and Find Full Text PDFThe estuarine system functions as natural filters due to its ability to facilitate material transformation, planktonic bacteria play a crucial role in the cycling of complex nutrients and pollutants within estuaries, and understanding the community composition and assembly therein is crucial for comprehending bacterial ecology within estuaries. Despite extensive investigations into the composition and community assembly of two bacterial fractions (free-living, FLB; particle-attached, PAB), the process by which bacterioplankton communities in these two habitats assemble in the nearshore and offshore zones of estuarine ecosystems remains poorly understood. In this study, we conducted sampling in the Yangtze River Estuary (YRE) to investigate potential variations in the composition and community assembly of FLB and PAB in nearshore and offshore regions.
View Article and Find Full Text PDFFront Microbiol
January 2024
Marine fungi are essential for the ecological function of estuarine ecosystems. However, limited studies have reported on the structure and assembly pattern of the fungal communities in estuaries. The purpose of this study is to reveal the structure and the ecological process of the fungal community in the Yangtze River Estuary (YRE) by using the amplicon sequencing method.
View Article and Find Full Text PDFWater Environ Res
December 2023
In this work, a composite flocculant (polyferric titanium sulfate-polydimethyldiallylammonium chloride [PFTS-PDMDAAC]) with a rich spatial network structure was prepared for the treatment of simulated wastewater containing polystyrene (PS) micro-nanoparticles. Characterization results showed that the surface of the PFTS-PDMDAAC was a three-dimensional network polymer of chain molecules that exhibited good thermal stability and formed an amorphous polymer containing multiply hydroxyl-bridged titanium and iron. When n(OH ) : n(Fe) = 1:2, n(PO ) : n(Fe) = 0.
View Article and Find Full Text PDFThis study aimed to reveal the importance of horizontal gene transfer (HGT) for the agarose-degrading ability and the related degradation pathway of a deep-sea bacterium Vibrio natriegens WPAGA4, which was rarely reported in former works. A total of four agarases belonged to the GH50 family, including Aga3418, Aga3419, Aga3420, and Aga3472, were annotated and expressed in Escherichia coli cells. The agarose degradation products of Aga3418, Aga3420, and Aga3472 were neoagarobiose, while those of Aga3419 were neoagarobiose and neoagarotetraose.
View Article and Find Full Text PDFA yellow, Gram-stain-negative, aerobic, and rod-shaped strain, designated as C18, was isolated from seawater in the tidal region of Taizhou. Growth of strain C18 occurs at 20-45 °C, at pH 5.5-8.
View Article and Find Full Text PDFAs an important coastal "blue carbon sink," mangrove ecosystems contain microbial communities with an as-yet-unknown high species diversity. Exploring the assemblage and structure of sediment microbial communities therein can aid in a better understanding of their ecosystem functioning, such as carbon sequestration and other biogeochemical cycles in mangrove wetlands. However, compared to other biomes, the study of mangrove sediment microbiomes is limited, especially in diverse mangrove ecosystems at a large spatial scale, which may harbor microbial communities with distinct compositions and functioning.
View Article and Find Full Text PDFA novel bacterium, designated as strain RS5-5, was isolated from lake water in northwestern China. Cells of the isolate were observed to be rod shaped and Gram stain negative. Its growth occurred at 4-37 ℃, pH 6.
View Article and Find Full Text PDFA Gram-stain negative, strictly aerobic, and rod-shaped bacterium, designated as strain L182, was isolated from coastal sediment in Beihai, Guangxi Province, PR China. Colonies of strain L182 were yellow, 2 mm in diameter, round, opaque, smooth and convex after incubation on marine ager at 30 °C for 3 days. Cells were catalase-positive but oxidase-negative.
View Article and Find Full Text PDFUp until now, the characterizations of GH50 agarases from species have rarely been reported compared to GH16 agarases. In this study, a deep-sea strain, WPAGA4, was isolated and identified as due to the maximum similarity of its 16S rRNA gene sequence, the values of its average nucleotide identity, and through digital DNA-DNA hybridization. Two circular chromosomes in WPAGA4 were assembled.
View Article and Find Full Text PDFAn estuary plays an important role in material and energy exchange between the land and sea, where complex physical, chemical, and biological processes occur. Here, we investigated the assembly processes of free-living (FL) and particle-associated (PA) bacterial communities in two seawater layers at five stations in the Yangtze River Estuary (YRE) by using 16S rRNA sequencing methods. The results indicated that Proteobacteria was the most abundant phylum in the YRE.
View Article and Find Full Text PDFThe fungal communities provide the nutrients and drive the cycles of elements in nature, and the rare fungal taxa are proved to be crucial for these communities in many environments. However, the ecological functions of rare taxa for the fungal communities in mangrove ecosystems are poorly assessed until now. This work aims to reveal the importance of rare taxa for the assembly of fungal communities in mangrove sediments by using the amplicon sequencing analysis of different spatiotemporal samples collected from Sanya mangroves, China.
View Article and Find Full Text PDFGenus Microbulbifer plays important roles in element cycling process in marine environments, and the first type strain KCTC 12973 (=ISL-39 = CCUG 54356) of M. celer was isolated and identified in 2007. However, the genome sequence of M.
View Article and Find Full Text PDFA strain was isolated from an activated sludge system and identified as Halomonas piezotolerans HN2 in this study, which is the first strain in H. piezotolerans with the capability of heterotrophic nitrification and aerobic denitrification. Strain HN2 showed the maximum nitrogen removal rate of 9.
View Article and Find Full Text PDFIn this work, a strain named YPW1 was isolated from the sediments of an artificial mangrove in Yanpu harbor, China. A complete genome of YPW1 was sequenced and assembled. The 16S rRNA gene assigned strain YPW1 into genus Microbulbifer, and the maximum values of average nucleotide identity and digital DNA-DNA hybridization of ZHDP1 genome were 90.
View Article and Find Full Text PDFThe neoagaro-oligosaccharides, degraded from agarose by agarases, are important natural substances with many bioactivities. In this study, a novel agarase gene, agaW1540, from the genome of a deep-sea bacterium sp. WPAGA9, was expressed, and the recombinant AgaW1540 (rAgaW1540) displayed the maximum activity under the optimal pH and temperature of 7.
View Article and Find Full Text PDFA novel Gram-staining-negative, catalase- and oxidase-positive, facultatively anaerobic and rod-shaped motile bacterial strain, designated as ZWAL4003, was isolated from mangrove sediments of the Zini Mangrove Forest, Zhangzhou City, PR China. Phylogenetic analysis based on its 16S rRNA gene sequence indicated that ZWAL4003 was grouped into a separated branch with MSSRF60 (97.38% nucleotide sequence identity) and NBRC 103148 (97.
View Article and Find Full Text PDFSeaweed oligosaccharides possess great bioactivities. However, different microbial strains are required to degrade multiple polysaccharides due to their limited biodegradability, thereby increasing the cost and complexity of production. Shewanella sp.
View Article and Find Full Text PDFBioactivities, such as freshness maintenance, whitening, and prebiotics, of marine neoagaro-oligosaccharides (NAOS) with 4-12 degrees of polymerization (DPs) have been proven. However, NAOS produced by most marine β-agarases always possess low DPs (≤6) and limited categories; thus, a strategy that can efficiently produce NAOS especially with various DPs ≥8 must be developed. In this study, 60 amino acid residues with no functional annotation result were removed from the C-terminal of agarase AgaM1, and truncated recombinant AgaM1 (trAgaM1) was found to have the ability to produce NAOS with various DPs (4-12) under certain conditions.
View Article and Find Full Text PDFTo avoid conflict between biofuel and food resource production, marine macroalgae (main algal polysaccharides) have been suggested as potent feedstock for biofuel production. WPAGA1, a typical marine polysaccharide-degrading bacterium, can utilize crude agarose as the sole carbon source. Transcriptomic analysis was performed to further investigate the metabolic pathway of environmental-friendly utilization of crude agarose in WPAGA1.
View Article and Find Full Text PDFBackground: Mangroves are ecologically and economically important forests of the tropics. As one of the most carbon-rich biomes, mangroves account for 11% of the total input of terrestrial carbon into oceans. Although viruses are considered to significantly influence local and global biogeochemical cycles, little information is available regarding the community structure, genetic diversity and ecological roles of viruses in mangrove ecosystems.
View Article and Find Full Text PDF