Curcumin has been incorporated for the development of new products with applicability in food, pharmaceutical and cosmetic fields in Asia, due to the traits of anti-oxidation and anti-inflammatory. In the application of food engineering, high-pressure processing (HPP) can destroy non-covalent bonds and use as a method to inactivate bacteria for extending the perseveration of food. Thus, this study focuses on a novel approach for the microencapsulation of curcumin by the combination of ethanol injection and HPP at the room temperature for stabilizing pure curcumin in aqueous solutions and in liposome.
View Article and Find Full Text PDFCurcumin is used for the development of new pharmaceutical and food products, but its application is generally hindered by the poor solubility of curcumin and thermal instability during storage and processing. In this study, the liposomes of curcumin (cur-liposomes) were prepared by a novel combination of ethanol injection and high-pressure processing (HPP) to enhance the stability and preservation of curcumin. The pasteurization, mean particle size, size distribution, and encapsulation efficiency of cur-liposomes and the kinetics of their thermal degradation were also investigated in this research.
View Article and Find Full Text PDFToxic organic solvent residues and the active substances of thermal degradation (such as anthocyanin and polyphenols) are always a concern with the liposomes produced by traditional techniques. The present study focuses on a new approach for the microencapsulation of petal (CTP) extracts, which contain anthocyanins, by high-pressure processing (HPP) at room temperature. Thus, a series of CTP liposomes were prepared and their physicochemical properties were analyzed by laser granulometry and by scanning electron microscopy (SEM).
View Article and Find Full Text PDF