Publications by authors named "Wu Nan Wu"

The in vivo metabolism of the antipsychotic agent mazapertine was studied after oral administration of mazapertine succinate (40 mg/subject) to two healthy volunteers, and urine (0-24 hours) was obtained for metabolite identification using API-ionspray LC/MS and MS/MS analysis. Unchanged mazapertine (12% of the sample) plus 10 metabolites were profiled, quantified, and tentatively identified on the basis of MS data, Glusulase-hydrolysis, and by comparison to synthetic samples. The formation of mazapertine metabolites are via seven metabolic pathways: (1) phenylhydroxylation, (2) piperidyl oxidation, (3) O-dealkylation, (4) N-dephenylation, (5) oxidative N-debenzylation, (6).

View Article and Find Full Text PDF

The in vitro and in vivo metabolism of RWJ-53050, an anxiolytic agent, was investigated after incubation with rat and human hepatic S9 fractions, and human microsomes and 7 microsomes containing individual human CYP isoforms, CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 in the presence of NADPH-generating system, and a single oral dose administration to dogs (30 mg/kg). Unchanged RWJ-53050 (> or = 74% of the sample in vitro; < or = 13% in vivo) plus 16 metabolites were profiled, quantified and tentatively identified based on the API-MS and MS/MS data. The formation of RWJ-53050 metabolites are via the 5 pathways: 1.

View Article and Find Full Text PDF

The pharmacokinetics and drug disposition of 14C 1-[3-[[4-[2-(1-methylethoxy)phenyl]-1-piperazinyl]methyl]benzoy]piperidine succinate (RWJ-37796, mazapertine, Mz) have been investigated in male and female Sprague-Dawley rats. Approximately 93% of the orally administered radioactive dose (30 mg/kg) was recovered after 7 days. Fecal elimination accounted for approximately 63% of the dose while urine accounted for 30%.

View Article and Find Full Text PDF

Electrospray mass spectrometry and tandem mass spectrometry techniques were utilized to elucidate the structures of ten aporphine-benzylisoquinoline alkaloids, consisting of monoether link between aporphine and benzyltetrahydroisoquinoline units, which were isolated and identified previously from a variety of Thalictrum sp. (Ranunculaceae family) based mainly on the UV, IR, CD, NMR, EI-MS, CI-MS, derivatization, and chemical degradation techniques. In this investigation, protonated molecules, [M+H]+ ions, for nine tertiary alkaloids, a molecular ion, [M+'] ion, for a quaternary alkaloid, and very intense doubly- protonated molecules, [M+2H]2+ ions (100% of relative abundance) in Q1 Scan MS spectra, and prominent as well as diagnostic product ions for structural information in the tandem MS/MS spectra were observed for all investigated alkaloids each in nanogram quantities.

View Article and Find Full Text PDF

The objective of this study was to investigate the in-vitro metabolism of isotetrandrine, a bisbenzylisoquinoline alkaloid, using rat hepatic S9 fraction and to profile and identify its metabolites using high-performance liquid chromatography-atmospheric pressure ionization mass spectrometry (HPLC-MS) and tandem mass spectrometry (MS/MS). Isotetrandrine was incubated at a concentration of 100 microg mL(-1) with male rat hepatic S9 fraction in the presence of an NADPH generating system (Tris buffer, pH 7.4, 37 degrees C).

View Article and Find Full Text PDF

The tertiary amide delta opioid agonist 2 is a potent antinociceptive agent. Compound 2 was metabolized in vitro and in vivo to secondary amide 3, a potent and selective micro opioid agonist. The SAR of a series of N-alkyl-4-[(8-azabicyclo[3.

View Article and Find Full Text PDF

API-ionspray MS and MS/MS techniques have been utilized to elucidate the structures of 20 bisbenzylisoquinoline alkaloids, consisting of 17 diether and three monoether links of two benzyltetrahydroisoquinoline units, which were isolated and identified previously from a variety of Thalictrum sp. (Ranunculaceae family). Apparent protonated molecular ions ([M+H](+)) and very intense doubly-protonated molecular ion ([M+2H](++), 100% of relative abundance) in Q1 Scan MS spectra and prominent as well as diagnostic product ions for the structural information in MS/MS spectra were observed in nanogram quantities for all investigated alkaloids.

View Article and Find Full Text PDF

The in-vitro biotransformation of the anxiolytic agent, RWJ-50172 was studied after incubation with rat hepatic S9 fraction in the presence of an NADPH-generating system, and incubating with Cunninghamella echinulata in soy-bean medium. Unchanged RWJ-50172 (80% of the sample in rat; 86% in fungi) plus 6 metabolites (M1-M6) were profiled, quantified and tentatively identified on the basis of API-MS/MS data. The metabolic pathways for RWJ-50172 are proposed, and the four metabolic pathways are: pyrido-oxidation (pathway A), phenylhydroxylation (B), dehydration (C) and reduction (D).

View Article and Find Full Text PDF

The in-vitro biotransformation of a new calcium-mimetic agent and benzenemethanamine analogue, RWJ-68025, was studied after incubation with rat and human hepatic S9 fractions in the presence of an NADPH-generating system. Unchanged RWJ-68025 (44-48% of the sample) plus 12 metabolites were profiled, quantified, and tentatively identified on the basis of API (ionspray)-MS and MS/MS data, and ethyl derivatization for phenolic and carboxylic metabolites. Four metabolic pathways for RWJ-68025 were proposed: pathway 1, O-demethylation; pathway 2, phenyl oxidation; pathway 3, methyl oxidation; and pathway 4, N-dealkylation/acetylation.

View Article and Find Full Text PDF

The in vitro metabolism of the anxiolytic agent, RWJ-52763 was studied after incubation with human hepatic S9 fraction in the presence of an NADPH-generating system. Unchanged RWJ-52763 (64% of the sample) plus six metabolites (M1-M6) were profiled, quantified, and tentatively identified on the basis of API-MS/MS data. The metabolic pathways for RWJ-52763 are proposed, and the two metabolic pathways are: (1) N/O-dealkylation, and (2) phenylhydroxylation.

View Article and Find Full Text PDF

A series of pyrido[1,2-a]benzimidazoles (PBIs) with substitution on the N(5)-nitrogen has been synthesized and found to possess high affinity for the benzodiazepine (BZD) site on the GABA-A receptor. The compounds evaluated include those bearing a heteroalkyl group and heterocyclic rings. The most promising of these compounds is ethoxymethyl analogue 24, which has an IC(50) of 0.

View Article and Find Full Text PDF

The in vitro metabolism of an antitumor, hypotensive, and antimicrobial aporphine-benzyltetrahydroisoquinoline alkaloid, thalicarpine was studied after incubation with rat hepatic S9 fraction in the presence of an NADPH-generating system. Unchanged thalicarpine (46% of the sample) plus eight metabolites were profiled, quantified, and tentatively identified on the basis of API (ionspray)-MS/MS/MS data. The proposed metabolic pathways for thalicarpine are proposed, and the three metabolic pathways are: (1) N-demethylation; (2) aporphine ring oxidation; and (3) benzylic oxidation/reduction.

View Article and Find Full Text PDF