Inspired by the high transition-metal-ion content in mussel glues, and the cross-linking and mechanical reinforcement effects of some transition-metal ions in mussel threads, high concentrations of nickel(II), cobalt(II), and manganese(II) ions have been purposely introduced into the reaction system for dopamine polymerization. Kinetics studies were conducted for the Ni(2+)-dopamine system to investigate the polymerization mechanism. The results show that the Ni(2+) ions could accelerate the assembly of dopamine oligomers in the polymerization process.
View Article and Find Full Text PDFIn this work, bundles of rutile TiO₂ nanoneedles/nanorods are hydrothermally grown on carbon nanofibers (CNFs), forming free-standing mats consisting of three dimensional hierarchical nanostructures (TiO₂-on-CNFs). Morphologies and structures of the TiO₂-on-CNFs are studied using a field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) and thermogravimetric analyzer (TGA). Their electrochemical properties as electrodes in lithium ion batteries (LIBs) are investigated and correlated with the morphologies and structures.
View Article and Find Full Text PDFA series of solvent-free ionic liquid (IL)-based polymer electrolytes composed of amorphous and biodegradable poly(propylene carbonate) (PPC) host, LiClO4, and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)) were prepared and characterized for the first time. FTIR studies reveal that the interaction between PPC chains and imidazolium cations weakens the complexation between PPC chains and Li(+) ions. Thermal analysis (DSC and TGA) results show that the incorporation of BMIM(+)BF4(-) into PPC/LiClO4 remarkably decreases the glass transition temperature and improves the thermal stability of the electrolytes.
View Article and Find Full Text PDFSilicon (Si) is a promising material for lithium ion battery (LIB) anodes due to its high specific capacity. To overcome its shortcomings such as insulation property and large volume change during the charge-discharge process, a novel hybrid system, Si nanoparticles encapsulated in hollow graphitized carbon nanofibers, is studied. First, electrospun polyacrylonitrile (PAN)-Si hybrid nanofibers were obtained using water as the collector.
View Article and Find Full Text PDFClay-based functional hydrogels were facilely prepared via a bioinspired approach. Montmorillonite (clay) was exfoliated into single layers in water and then coated with a thin layer of polydopamine (PDOPA) via in situ polymerization of dopamine under basic aqueous conditions. When a small amount of ferric salt was added into aqueous suspensions of the polydopamine-coated clay (D-clay), D-clay and Fe(3+) ions could rapidly self-assemble into three-dimensional networks through the formation of coordination bonds.
View Article and Find Full Text PDFThin carbonized polydopamine (C-PDA) coatings are found to have similar structures and electrical conductivities to those of multilayered graphene doped with heteroatoms. Greatly enhanced electrochemical properties are achieved with C-PDA-coated SnO(2) nanoparticles where the coating functions as a mechanical buffer layer and conducting bridge.
View Article and Find Full Text PDFPolydopamine-coated graphene oxide (DGO) films exhibit electrical conductivities of 11,000 S m(-1) and 30,000 S m(-1) upon vacuum annealing at 130 °C and 180 °C, respectively. Conductive poly(vinyl alcohol)/graphene and epoxy/graphene nanocomposites show low percolation thresholds due to the excellent dispersibility of the DGO sheets and their effective in situ reduction.
View Article and Find Full Text PDFA reverse-barrier technique is used to enable the treatment of electrospun poly(vinylidene fluoride) nanofibrous membranes with supercritical carbon dioxide. The treatment induces the formation of nanopores and extended-chain β crystallites of small lateral dimensions in the nanofibers. It also creates interfiber junctions, resulting in a remarkable improvement in mechanical properties of the membranes.
View Article and Find Full Text PDFPolyvinylidene difluoride (PVDF) solutions containing a very low concentration of single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs) of similar surface chemistry, respectively, were electrospun, and the nanofibers formed were collected using a modified rotating disk collector. The polymorphic behavior and crystal orientation of the nanofibers were studied using wide-angle X-ray diffraction and infrared spectroscopy, while the nanotube alignment and interfacial interactions in the nanofibers were probed by transmission electron microscopy and Raman spectroscopy. It is shown that the interfacial interaction between the SWCNTs and PVDF and the extensional force experienced by the nanofibers in the electrospinning and collection processes can work synergistically to induce highly oriented beta-form crystallites extensively.
View Article and Find Full Text PDF