Publications by authors named "Wsevolod V Lundin"

A complex study was performed on a set of AlGaN/GaN high-electron-mobility transistor structures grown by metalorganic vapor phase epitaxy on miscut Si(111) wafers with a highly resistive epitaxial Si layer to investigate the influence of substrate miscut on their properties. The results showed that wafer misorientation had an influence on the strain evolution during the growth and surface morphology, and could have a strong impact on the mobility of 2D electron gas, with a weak optimum at 0.5° miscut angle.

View Article and Find Full Text PDF

The results of the study of the influence of Fe segregation into the unintentionally doped GaN channel layer in AlGaN/AlN/GaN heterostructures with Fe-doped GaN buffer layer on the electrical properties of two-dimensional electron gas are presented. A set of several samples was grown by metal-organic vapor-phase epitaxy and characterized by the van der Pauw method. The dependence of concentration and mobility of the two-dimensional electron gas on the channel layer thickness was analyzed theoretically by self-consistent solving of 1D Poisson and Schrödinger equations and scattering rate calculations within the momentum relaxation time approximation.

View Article and Find Full Text PDF

We present a study of blue III-nitride light-emitting diodes (LEDs) with multiple quantum well (MQW) and quantum dot (QD) active regions (ARs), comparing experimental and theoretical results. The LED samples were grown by metalorganic vapor phase epitaxy, utilizing growth interruption in the hydrogen/nitrogen atmosphere and variable reactor pressure to control the AR microstructure. Realistic configuration of the QD AR implied in simulations was directly extracted from HRTEM characterization of the grown QD-based structures.

View Article and Find Full Text PDF

The impact of electromechanical coupling on optical properties of light-emitting diodes (LEDs) with InGaN/GaN quantum-dot (QD) active regions is studied by numerical simulations. The structure, i.e.

View Article and Find Full Text PDF