Publications by authors named "Wouter Van den Broeck"

Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals' life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations.

View Article and Find Full Text PDF
Article Synopsis
  • Limited data on children's interactions in schools can provide insights into the risks of respiratory infection transmission.
  • The study recorded over 77,000 contact events among 242 individuals in a French school, highlighting that children average 323 contacts daily, predominantly with classmates.
  • Understanding these contact patterns can inform public health strategies during epidemics and guide effective control measures in schools.
View Article and Find Full Text PDF

Background: The spread of infectious diseases crucially depends on the pattern of contacts between individuals. Knowledge of these patterns is thus essential to inform models and computational efforts. However, there are few empirical studies available that provide estimates of the number and duration of contacts between social groups.

View Article and Find Full Text PDF

Background: Nosocomial infections place a substantial burden on health care systems and represent one of the major issues in current public health, requiring notable efforts for its prevention. Understanding the dynamics of infection transmission in a hospital setting is essential for tailoring interventions and predicting the spread among individuals. Mathematical models need to be informed with accurate data on contacts among individuals.

View Article and Find Full Text PDF

Background: Computational models play an increasingly important role in the assessment and control of public health crises, as demonstrated during the 2009 H1N1 influenza pandemic. Much research has been done in recent years in the development of sophisticated data-driven models for realistic computer-based simulations of infectious disease spreading. However, only a few computational tools are presently available for assessing scenarios, predicting epidemic evolutions, and managing health emergencies that can benefit a broad audience of users including policy makers and health institutions.

View Article and Find Full Text PDF

The availability of new data sources on human mobility is opening new avenues for investigating the interplay of social networks, human mobility and dynamical processes such as epidemic spreading. Here we analyze data on the time-resolved face-to-face proximity of individuals in large-scale real-world scenarios. We compare two settings with very different properties, a scientific conference and a long-running museum exhibition.

View Article and Find Full Text PDF

Background: Digital networks, mobile devices, and the possibility of mining the ever-increasing amount of digital traces that we leave behind in our daily activities are changing the way we can approach the study of human and social interactions. Large-scale datasets, however, are mostly available for collective and statistical behaviors, at coarse granularities, while high-resolution data on person-to-person interactions are generally limited to relatively small groups of individuals. Here we present a scalable experimental framework for gathering real-time data resolving face-to-face social interactions with tunable spatial and temporal granularities.

View Article and Find Full Text PDF

While the H1N1 pandemic is reaching high levels of influenza activity in the Northern Hemisphere, the attention focuses on the ability of national health systems to respond to the expected massive influx of additional patients. Given the limited capacity of health care providers and hospitals and the limited supplies of antibiotics, it is important to predict the potential demand on critical care to assist planning for the management of resources and plan for additional stockpiling. We develop a disease model that considers the development of influenza-associated complications and incorporate it into a global epidemic model to assess the expected surge in critical care demands due to viral and bacterial pneumonia.

View Article and Find Full Text PDF

Determining the number of cases in an epidemic is fundamental to properly evaluate several disease features of high relevance for public health policies such as mortality, morbidity or hospitalization rates. Surveillance efforts are however incomplete especially at the early stage of an outbreak due to the ongoing learning process about the disease characteristics. An example of this is represented by the number of H1N1 influenza cases in Mexico during the first months of the current pandemic.

View Article and Find Full Text PDF

Background: On 11 June the World Health Organization officially raised the phase of pandemic alert (with regard to the new H1N1 influenza strain) to level 6. As of 19 July, 137,232 cases of the H1N1 influenza strain have been officially confirmed in 142 different countries, and the pandemic unfolding in the Southern hemisphere is now under scrutiny to gain insights about the next winter wave in the Northern hemisphere. A major challenge is pre-emptied by the need to estimate the transmission potential of the virus and to assess its dependence on seasonality aspects in order to be able to use numerical models capable of projecting the spatiotemporal pattern of the pandemic.

View Article and Find Full Text PDF