Publications by authors named "Wouter Schul"

In a recent clinical trial, balapiravir, a prodrug of a cytidine analog (R1479), failed to achieve efficacy (reducing viremia after treatment) in dengue patients, although the plasma trough concentration of R1479 remained above the 50% effective concentration (EC(50)). Here, we report experimental evidence to explain the discrepancy between the in vitro and in vivo results and its implication for drug development. R1479 lost its potency by 125-fold when balapiravir was used to treat primary human peripheral blood mononuclear cells (PBMCs; one of the major cells targeted for viral replication) that were preinfected with dengue virus.

View Article and Find Full Text PDF

Dengue fever is an emerging mosquito-borne flaviviral disease that threatens 2.5 billion people worldwide. No clinically approved vaccine and antiviral therapy are currently available to prevent or treat dengue virus (DENV) infection.

View Article and Find Full Text PDF

Dengue virus (DENV) is a mosquito-borne flavivirus that affects 2.5 billion people worldwide. There are four dengue serotypes (DENV1 to DENV4), and infection with one elicits lifelong immunity to that serotype but offers only transient protection against the other serotypes.

View Article and Find Full Text PDF

Dengue virus infection causes diseases in people, ranging from the acute febrile illness dengue fever, to life-threatening dengue hemorrhagic fever/dengue shock syndrome. We previously reported that a host cellular α-glucosidases I and II inhibitor, imino sugar CM-10-18, potently inhibited dengue virus replication in cultured cells, and significantly reduced viremia in dengue virus infected AG129 mice. In this report we show that CM-10-18 also significantly protects mice from death and/or disease progress in two mouse models of lethal dengue virus infection.

View Article and Find Full Text PDF

We describe a novel translation inhibitor that has anti-dengue virus (DENV) activity in vitro and in vivo. The inhibitor was identified through a high-throughput screening using a DENV infection assay. The compound contains a benzomorphan core structure.

View Article and Find Full Text PDF

Dengue (DEN) is a mosquito-borne viral disease that has become an increasing economic and health burden for the tropical and subtropical world. The lack of an appropriate animal model of DEN has greatly impeded the study of its pathogenesis and the development of vaccines/antivirals. We recently reported a DEN virus 2 (DENV-2) strain (D2Y98P) that lethally infects immunocompromised AG129 mice, resulting in organ damage or dysfunction and increased vascular permeability, hallmarks of severe DEN in patients (G.

View Article and Find Full Text PDF

Viral replication relies on the host to supply nucleosides. Host enzymes involved in nucleoside biosynthesis are potential targets for antiviral development. Ribavirin (a known antiviral drug) is such an inhibitor that suppresses guanine biosynthesis; depletion of the intracellular GTP pool was shown to be the major mechanism to inhibit flavivirus.

View Article and Find Full Text PDF

Cellular α-glucosidases I and II are enzymes that sequentially trim the three terminal glucoses in the N-linked oligosaccharides of viral envelope glycoproteins. This process is essential for the proper folding of viral glycoproteins and subsequent assembly of many enveloped viruses, including dengue virus (DENV). Imino sugars are substrate mimics of α-glucosidases I and II.

View Article and Find Full Text PDF

Dengue virus (DENV) is the most prevalent mosquito-borne viral pathogen that infects humans. Neither a vaccine nor an antiviral therapy is currently available for DENV. Here, we report an adenosine nucleoside prodrug that potently inhibits DENV replication both in cell culture and in a DENV mouse model.

View Article and Find Full Text PDF

We recently reported that (2R,3R,4R,5R)-2-(4-amino-pyrrolo[2,3-d]pyrimidin-7-yl)-3-ethynyl-5-hydroxy-methyl-tetrahydro-furan-3,4-diol is a potent inhibitor of dengue virus (DENV), with 50% effective concentration (EC(50)) and cytotoxic concentration (CC(50)) values of 0.7 microM and >100 microM, respectively. Here we describe the synthesis, structure-activity relationship, and antiviral characterization of the inhibitor.

View Article and Find Full Text PDF

The spread of dengue (DEN) worldwide combined with an increased severity of the DEN-associated clinical outcomes have made this mosquito-borne virus of great global public health importance. Progress in understanding DEN pathogenesis and in developing effective treatments has been hampered by the lack of a suitable small animal model. Most of the DEN clinical isolates and cell culture-passaged DEN virus strains reported so far require either host adaptation, inoculation with a high dose and/or intravenous administration to elicit a virulent phenotype in mice which results, at best, in a productive infection with no, few, or irrelevant disease manifestations, and with mice dying within few days at the peak of viremia.

View Article and Find Full Text PDF

Antiviral drug discovery is becoming increasingly important due to the global threat of viral disease pandemics. Many members of the genus Flavivirus are significant human pathogens, among which dengue virus (DENV) alone poses a public health threat to 2.5 billion worldwide, leading to 50-100 million human infections each year.

View Article and Find Full Text PDF

Dengue virus (DENV), a mosquito-borne flavivirus, is a major public health threat. The virus poses risk to 2.5 billion people worldwide and causes 50 to 100 million human infections each year.

View Article and Find Full Text PDF

The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside (betaOG). Compounds blocking the betaOG pocket are thought to interfere with conformational changes in the envelope protein that are essential for fusion.

View Article and Find Full Text PDF

Monocytes and macrophages are target cells for dengue infection. Besides their potential role for virus replication, activated monocytes/macrophages produce cytokines that may be critical for dengue pathology. To study the in vivo role of monocytes and macrophages for virus replication, we depleted monocytes and macrophages in IFN-alphabetagammaR knockout mice with clodronate liposomes before dengue infection.

View Article and Find Full Text PDF

The flavivirus envelope glycoprotein (E) is responsible for viral attachment and entry by membrane fusion. Its ectodomain is the primary target of the humoral immune response. In particular, the C-terminal Ig-like domain III of E, which is exposed at the surface of the viral particle, forms an attractive antigen for raising protective monoclonal antibodies (mAb).

View Article and Find Full Text PDF

The incidence of dengue fever epidemics has increased dramatically over the last few decades. However, no vaccine or antiviral therapies are available. Therefore, the need for safe and effective antiviral drugs has become imperative.

View Article and Find Full Text PDF

Dengue fever is an emerging arboviral disease for which no vaccine or antiviral treatment exists and that causes thousands of fatalities each year. To develop an in vivo test system for antidengue drugs, AG129 mice, which are deficient for the interferon- alpha / beta and - gamma receptors, were injected with unadapted dengue virus, resulting in a dose-dependent transient viremia lasting several days and peaking on day 3 after infection. Additionally, nonstructural protein 1, increased levels of proinflammatory cytokines, and neutralizing IgM and IgG antibodies were found, and mice had splenomegaly.

View Article and Find Full Text PDF

Cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) comprise major UV-induced photolesions. If left unrepaired, these lesions can induce mutations and skin cancer, which is facilitated by UV-induced immunosuppression. Yet the contribution of lesion and cell type specificity to the harmful biological effects of UV exposure remains currently unclear.

View Article and Find Full Text PDF

Background: The high and steadily increasing incidence of ultraviolet-B (UV-B)-induced skin cancer is a problem recognized worldwide. UV introduces different types of damage into the DNA, notably cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs). If unrepaired, these photolesions can give rise to cell death, mutation induction, and onset of carcinogenic events, but the relative contribution of CPDs and 6-4PPs to these biological consequences of UV exposure is hardly known.

View Article and Find Full Text PDF

During evolution, placental mammals appear to have lost cyclobutane pyrimidine dimer (CPD) photolyase, an enzyme that efficiently removes UV-induced CPDs from DNA in a light-dependent manner. As a consequence, they have to rely solely on the more complex, and for this lesion less efficient, nucleotide excision repair pathway. To assess the contribution of poor repair of CPDs to various biological effects of UV, we generated mice expressing a marsupial CPD photolyase transgene.

View Article and Find Full Text PDF