Assessment of neuronal activity using blood oxygenation level-dependent (BOLD) is confounded by how the cerebrovascular architecture modulates hemodynamic responses. To understand brain function at the laminar level, it is crucial to distinguish neuronal signal contributions from those determined by the cortical vascular organization. Therefore, our aim was to investigate the purely vascular contribution in the BOLD signal by using vasoactive stimuli and compare that with neuronal-induced BOLD responses from a visual task.
View Article and Find Full Text PDFRecent advances in functional magnetic resonance imaging (fMRI) at ultra-high field (≥7 tesla), novel hardware, and data analysis methods have enabled detailed research on neurovascular function, such as cortical layer-specific activity, in both human and nonhuman species. A widely used fMRI technique relies on the blood oxygen level-dependent (BOLD) signal. BOLD fMRI offers insights into brain function by measuring local changes in cerebral blood volume, cerebral blood flow, and oxygen metabolism induced by increased neuronal activity.
View Article and Find Full Text PDFUltra-high field functional magnetic resonance imaging (fMRI) offers the spatial resolution to measure neuronal activity at the scale of cortical layers. However, cortical depth dependent vascularization differences, such as a higher prevalence of macro-vascular compartments near the pial surface, have a confounding effect on depth-resolved blood-oxygen-level dependent (BOLD) fMRI signals. In the current study, we use hypercapnic and hyperoxic breathing conditions to quantify the influence of all venous vascular and micro-vascular compartments on laminar BOLD fMRI, as measured with gradient-echo (GE) and spin-echo (SE) scan sequences, respectively.
View Article and Find Full Text PDFFor cortical motor activity, the relationships between different body part representations is unknown. Through reciprocal body part relationships, functionality of cortical motor areas with respect to whole body motor control can be characterized. In the current study, we investigate the relationship between body part representations within individual neuronal populations in motor cortices, following a 7 Tesla fMRI 18-body-part motor experiment in combination with our newly developed non-rigid population Response Field (pRF) model and graph theory.
View Article and Find Full Text PDFBackground And Objectives: The restoration of touch to fingers and fingertips is critical to achieving dexterous neuroprosthetic control for individuals with sensorimotor dysfunction. However, localized fingertip sensations have not been evoked via intracortical microstimulation (ICMS).
Methods: Using a novel intraoperative mapping approach, we implanted electrode arrays in the finger areas of left and right somatosensory cortex and delivered ICMS over a 2-year period in a human participant with spinal cord injury.
Defining eloquent cortex intraoperatively, traditionally performed by neurosurgeons to preserve patient function, can now help target electrode implantation for restoring function. Brain-machine interfaces (BMIs) have the potential to restore upper-limb motor control to paralyzed patients but require accurate placement of recording and stimulating electrodes to enable functional control of a prosthetic limb. Beyond motor decoding from recording arrays, precise placement of stimulating electrodes in cortical areas associated with finger and fingertip sensations allows for the delivery of sensory feedback that could improve dexterous control of prosthetic hands.
View Article and Find Full Text PDFFor some experimental approaches in brain imaging, the existing normalization techniques are not always sufficient. This may be the case if the anatomical shape of the region of interest varies substantially across subjects, or if one needs to compare the left and right hemisphere in the same subject. Here we propose a new standard representation, building upon existing normalization methods: Cgrid (Cartesian geometric representation with isometric dimensions).
View Article and Find Full Text PDFThe relevance of human primary motor cortex (M1) for motor actions has long been established. However, it is still unknown how motor actions are represented, and whether M1 contains an ordered somatotopy at the mesoscopic level. In the current study we show that a detailed within-limb somatotopy can be obtained in M1 during finger movements using Gaussian population Receptive Field (pRF) models.
View Article and Find Full Text PDFThe functional organization of left and right hemispheres is different, and hemispheric asymmetries are thought to underlie variations in brain function across individuals. In this study, we assess how differences between hemispheres are reflected in Asymmetric Functional Connectivity (AFC), which provides a full description of how the brain's connectivity structure during resting state differs from that of the same brain mirrored over the longitudinal fissure. In addition, we assess how AFC varies across subjects.
View Article and Find Full Text PDFThe current study investigates if early visual cortical areas, V1, V2 and V3, use predictive coding to process motion information. Previous studies have reported biased visual motion responses at locations where novel visual information was presented (i.e.
View Article and Find Full Text PDFThe nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system.
View Article and Find Full Text PDFRecent imaging studies have reported directional motion biases in human visual cortex when perceiving moving random dot patterns. It has been hypothesized that these biases occur as a result of the integration of motion detector activation along the path of motion in visual cortex. In this study we investigate the nature of such motion integration with functional MRI (fMRI) using different motion stimuli.
View Article and Find Full Text PDF