J-DNA-binding protein 1 (JBP1) contributes to the biosynthesis and maintenance of base J (β-d-glucosyl-hydroxymethyluracil), an epigenetic modification of thymidine (T) confined to pathogenic protozoa such as and JBP1 has two known functional domains: an N-terminal T hydroxylase (TH) homologous to the 5-methylcytosine hydroxylase domain in TET proteins and a J-DNA-binding domain (JDBD) that resides in the middle of JBP1. Here, we show that removing JDBD from JBP1 results in a soluble protein (Δ-JDBD) with the N- and C-terminal regions tightly associated together in a well-ordered structure. We found that this Δ-JDBD domain retains TH activity but displays a 15-fold lower apparent rate of hydroxylation compared with JBP1.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) belong to the family of pentameric ligand-gated ion channels and mediate fast excitatory transmission in the central and peripheral nervous systems. Among the different existing receptor subtypes, the homomeric α7 nAChR has attracted considerable attention because of its possible implication in several neurological and psychiatric disorders, including cognitive decline associated with Alzheimer's disease or schizophrenia. Allosteric modulators of ligand-gated ion channels are of particular interest as therapeutic agents, as they modulate receptor activity without affecting normal fluctuations of synaptic neurotransmitter release.
View Article and Find Full Text PDFThe Protein Data Bank (PDB) is the global archive for structural information on macromolecules, and a popular resource for researchers, teachers, and students, amassing more than one million unique users each year. Crystallographic structure models in the PDB (more than 100,000 entries) are optimized against the crystal diffraction data and geometrical restraints. This process of crystallographic refinement typically ignored hydrogen bond (H-bond) distances as a source of information.
View Article and Find Full Text PDFMany crystal structures in the Protein Data Bank contain zinc ions in a geometrically distorted tetrahedral complex with four Cys and/or His ligands. A method is presented to automatically validate and correct these zinc complexes. Analysis of the corrected zinc complexes shows that the average Zn-Cys distances and Cys-Zn-Cys angles are a function of the number of cysteines and histidines involved.
View Article and Find Full Text PDFStructure validation is a key component of all steps in the structure determination process, from structure building, refinement, deposition, and evaluation all the way to post-deposition optimisation of structures in the Protein Data Bank (PDB) by re-refinement and re-building. Today, many aspects of protein structures are understood better than 10years ago, and combined with improved software and more computing power, the automated PDB_REDO procedure can significantly improve about 85% of all X-ray structures ever deposited in the PDB. We review structure validation, structure improvement, and a series of validation resources and facilities that give access to improved PDB files and to reports on the quality of the original and the improved structures.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
August 2015
A coordinate-based method is presented to detect peptide bonds that need correction either by a peptide-plane flip or by a trans-cis inversion of the peptide bond. When applied to the whole Protein Data Bank, the method predicts 4617 trans-cis flips and many thousands of hitherto unknown peptide-plane flips. A few examples are highlighted for which a correction of the peptide-plane geometry leads to a correction of the understanding of the structure-function relation.
View Article and Find Full Text PDFWe present a series of databanks (http://swift.cmbi.ru.
View Article and Find Full Text PDFProtein structures available from the PDB contain for each atom the coordinates, the occupancy and the B-factor that indicates the mobility of the atom. The values that should represent B-factors can relate to atomic motions in different ways. We present here a databank in which all B-factors have been converted to the one, homogeneous representation that is most useful for protein engineering applications.
View Article and Find Full Text PDFIn the Life Sciences 'omics' data is increasingly generated by different high-throughput technologies. Often only the integration of these data allows uncovering biological insights that can be experimentally validated or mechanistically modelled, i.e.
View Article and Find Full Text PDFIntracellular Ca2+ regulates the activity of the NCX (Na+/Ca2+ exchanger) through binding to the cytosolic CBD (Ca2+-binding domain) 1 and CBD2. In vitro studies of the structure and dynamics of CBD1 and CBD2, as well as studies of their kinetics and thermodynamics of Ca2+ binding, greatly enhanced our understanding of NCX regulation. We describe the fold of the CBDs in relation to other known structures and review Ca2+ binding of the different CBD variants from a structural perspective.
View Article and Find Full Text PDFWe report the effects of binding of Mg(2+) to the second Ca(2+)-binding domain (CBD2) of the sodium-calcium exchanger. CBD2 is known to bind two Ca(2+) ions using its Ca(2+)-binding sites I and II. Here, we show by nuclear magnetic resonance (NMR), circular dichroism, isothermal titration calorimetry, and mutagenesis that CBD2 also binds Mg(2+) at both sites, but with significantly different affinities.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
December 2010
The Engh and Huber parameters for bond lengths and bond angles have been used uncontested in macromolecular structure refinement from 1991 until very recently, despite critical discussion of their ubiquitous validity by many authors. An extensive analysis of the backbone angle τ (N-C(α)-C) illustrates that the Engh and Huber parameters can indeed be improved and a recent study [Tronrud et al. (2010), Acta Cryst.
View Article and Find Full Text PDF