Background: Two Southeast Asian spider collections: that of Frances and John Murphy, now in the Manchester University Museum and the Deeleman collection, now at the Naturalis Biodiversity Center in Leiden constituted the basis of this analysis of Thorell, 1887 and related genera. The latter collection also includes many thousands of spiders obtained by canopy fogging for an ecological project in Borneo by A. Floren.
View Article and Find Full Text PDFTens of millions of images from biological collections have become available online over the last two decades. In parallel, there has been a dramatic increase in the capabilities of image analysis technologies, especially those involving machine learning and computer vision. While image analysis has become mainstream in consumer applications, it is still used only on an artisanal basis in the biological collections community, largely because the image corpora are dispersed.
View Article and Find Full Text PDFBackground: The landscape of biodiversity data infrastructures and organisations is complex and fragmented. Many occupy specialised niches representing narrow segments of the multidimensional biodiversity informatics space, while others operate across a broad front, but differ from others by data type(s) handled, their geographic scope and the life cycle phase(s) of the data they support. In an effort to characterise the various dimensions of the biodiversity informatics landscape, we developed a framework and dataset to survey these dimensions for ten organisations (DiSSCo, GBIF, iBOL, Catalogue of Life, iNaturalist, Biodiversity Heritage Library, GeoCASe, LifeWatch, eLTER ELIXIR), relative to both their current activities and long-term strategic ambitions.
View Article and Find Full Text PDFThe early twenty-first century has witnessed massive expansions in availability and accessibility of digital data in virtually all domains of the biodiversity sciences. Led by an array of asynchronous digitization activities spanning ecological, environmental, climatological, and biological collections data, these initiatives have resulted in a plethora of mostly disconnected and siloed data, leaving to researchers the tedious and time-consuming manual task of finding and connecting them in usable ways, integrating them into coherent data sets, and making them interoperable. The focus to date has been on elevating analog and physical records to digital replicas in local databases prior to elevating them to ever-growing aggregations of essentially disconnected discipline-specific information.
View Article and Find Full Text PDFThreats to global biodiversity are increasingly recognised by scientists and the public as a critical challenge. Molecular sequencing technologies offer means to catalogue, explore, and monitor the richness and biogeography of life on Earth. However, exploiting their full potential requires tools that connect biodiversity infrastructures and resources.
View Article and Find Full Text PDFBiodiversity informatics plays a central enabling role in the research community's efforts to address scientific conservation and sustainability issues. Great strides have been made in the past decade establishing a framework for sharing data, where taxonomy and systematics has been perceived as the most prominent discipline involved. To some extent this is inevitable, given the use of species names as the pivot around which information is organised.
View Article and Find Full Text PDF