Publications by authors named "Wout A P Breeman"

Background: Targeted radionuclide therapy with high-energy beta-emitters is generally considered suboptimal to cure small tumours (<300 mg). Tumour targeting of the CCK2 receptor-binding minigastrin analogue PP-F11 was determined in a tumour-bearing mouse model at increasing peptide amounts. The optimal therapy was analysed for PP-F11 labelled with (90)Y, (177)Lu or (213)Bi, accounting for the radionuclide specific activities (SAs), the tumour absorbed doses and tumour (radio) biology.

View Article and Find Full Text PDF

Introduction: Gastrin-releasing peptide receptors (GRPR) and GRP-derived analogs have attracted attention due to high receptor expression in frequently occurring human neoplasia. The authors recently synthesized a series of GRPR-affine peptide analogs based on the 27-mer GRP and derivatized with the DOTA chelator at the N-terminus for (111)In-labeling. In this study, the authors evaluated the most promising from these series, DOTA-GRP(13-27), after radiolabeling with (177)Lu for future therapeutic applications.

View Article and Find Full Text PDF

Purpose: Stability of radiolabelled cholecystokinin 2 (CCK2) receptor targeting peptides has been a major limitation in the use of such radiopharmaceuticals especially for targeted radionuclide therapy applications, e.g. for treatment of medullary thyroid carcinoma (MTC).

View Article and Find Full Text PDF

Purpose: Prostate-specific antigen (PSA)-based screening for prostate cancer (PC) has dramatically increased early diagnosis. Current imaging techniques are not optimal to stage early PC adequately. A promising alternative to PC imaging is peptide-based scintigraphy using radiolabelled bombesin (BN) analogues that bind to gastrin-releasing peptide receptors (GRPR) being overexpressed in PC.

View Article and Find Full Text PDF

Human prostate cancer (PC) overexpresses the gastrin-releasing peptide receptor (GRPR). Radiolabeled GRPR-targeting analogs of bombesin (BN) have successfully been introduced as potential tracers for visualization and treatment of GRPR-overexpressing tumors. A previous study showed GRPR-mediated binding of radiolabeled BN analogs in androgen-dependent but not in androgen-independent xenografts representing the more advanced stages of PC.

View Article and Find Full Text PDF

Molecular imaging plays an essential role in balancing the clinical benefits and risks of radionuclide-based cancer therapy. To effectively treat individual patients, careful assessment of biodistribution, dosimetry, and toxicity is essential. In this Account, we describe advances that combine features of molecular imaging and radionuclide therapy to provide new avenues toward individualized cancer treatment.

View Article and Find Full Text PDF

Purpose: Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in a high percentage of medullary thyroid carcinomas (MTC). Analogous to somatostatin receptors, CCK-2 receptors might be viable targets for radionuclide scintigraphy and/or radionuclide therapy. Several CCK-2 receptor-binding radiopeptides have been developed, and some have been carried through into clinical studies.

View Article and Find Full Text PDF

Purpose: The aim of this study was to evaluate [(99m)Tc]Demotate 2 ([(99m)Tc-N(4) (0-1),Asp(0),Tyr(3)]octreotate) as a candidate for in vivo imaging of sst(2)-positive tumours and to compare it with [(111)In]DOTA-tate ([(111)In-DOTA(0),Tyr(3)]octreotate).

Methods: Labelling of Demotate 2 with (99m)Tc was performed at room temperature using SnCl(2) as reductant in the presence of citrate at alkaline pH. Radiochemical analysis involved ITLC and HPLC methods.

View Article and Find Full Text PDF

Unlabelled: Tumor-induced angiogenesis can be targeted by RGD (Arg-Gly-Asp) peptides, which bind to alpha(v)beta(3)-receptors upregulated on angiogenic endothelial cells. RGD-containing peptides are capable of inducing apoptosis through direct activation of procaspase-3 to caspase-3 in cells. Additionally, tumor cells overexpressing somatostatin receptors can be targeted by somatostatin analogs.

View Article and Find Full Text PDF

Unlabelled: Peptide receptor-targeted radionuclide therapy of somatostatin receptor-expressing tumors is a promising application of radiolabeled somatostatin analogs. Suitable radionuclides are (90)Y, a pure, high-energy beta-emitter (2.27 MeV), and (177)Lu, a medium-energy beta-emitter (0.

View Article and Find Full Text PDF

Unlabelled: Receptor-targeted scintigraphy and radionuclide therapy with radiolabeled somatostatin analogs are successfully applied for somatostatin receptor-positive tumors. The synergistic effects of an apoptosis-inducing factor, for example, the Arg-Gly-Asp (RGD) motif, can increase the radiotherapeutic efficacy of these peptides. Hence, the tumoricidal effects of the hybrid peptide RGD-diethylaminetriaminepentaacetic acid (DTPA)-Tyr3-octreotate (cyclic[c](Arg-Gly-Asp-D-Tyr-Asp)-Lys(DTPA)-D-Phe-c(Cys-Tyr-D-Trp-Lys-Thr-Cys)-Thr), hereafter referred to as RGD-DTPA-octreotate, were evaluated in comparison with those of RGD (c(Arg-Gly-Asp-D-Tyr-Asp)) and Tyr3-octreotate (D-Phe-c(Cys-Tyr-D-Trp-Lys-Thr-Cys)-Thr).

View Article and Find Full Text PDF

Somatostatin analogs promising for peptide receptor scintigraphy (PRS) and peptide receptor radionuclide therapy (PRRT) are D-Phe-c(Cys-Tyr-D-Trp-Lys-Thr-Cys)-Thr(ol) (Tyr 3-octreotide) and D-Phe-c(Cys-Tyr-D-Trp-Lys-Thr-Cys)-Thr (tyr3-octreotate). For radiotherapeutic applications these peptides are being labeled with the beta(-) particle emitters 177Lu or 90Y. We evaluated the therapeutic effects of these analogs chelated with tetra-azacyclododecatatro-acetic acid (DOTA) and labeled with 90Y or 177Lu in an in vitro colony-forming assay using the rat pancreatic tumor cell line CA20948.

View Article and Find Full Text PDF

Unlabelled: Human somatostatin (SS) receptor (sst)-positive tumors can be visualized by gamma camera scintigraphy after the injection of [(111)In-diethylenetriaminepentaacetic acid (DTPA)-D-Phe(1)] octreotide. Uptake of [(111)In-DTPA-D-Phe(1)]octreotide is dependent on sst-mediated internalization of the radioligand by the tumor cells. Human sst-positive tumors frequently express multiple sst subtypes.

View Article and Find Full Text PDF

Unlabelled: Peptide receptor radionuclide therapy (PRRT) using [(111)In-DTPA(0)]octreotide (where DTPA is diethylenetriaminepentaacetic acid) is feasible because, besides gamma-radiation, (111)In emits both therapeutic Auger and internal conversion electrons having a tissue penetration of 0.02-10 and 200-500 micro m, respectively. The aim of this study was to investigate the therapeutic effects of [(111)In-DTPA(0)]octreotide in a single-cell model including the effects of incubation time, radiation dose, and specific activity of [(111)In-DTPA(0)]octreotide.

View Article and Find Full Text PDF

In preclinical studies in rats we evaluated biodistribution and therapeutic effects of different somatostatin analogs, [(111)In-DTPA]octreotide, [(90)Y-DOTA,Tyr(3)]octreotide and [(177)Lu-DOTA,Tyr(3)]octreotate, currently also being applied in clinical radionuclide therapy studies. [Tyr(3)]octreotide and [Tyr(3)]octreotate, chelated with DTPA or DOTA, both showed high affinity binding to somatostatin receptor subtype 2 (sst(2)) in vitro. The radiolabelled compounds all showed high tumor uptake in sst(2)-positive tumors in vivo in rats, the highest uptake being reached with [(177)Lu-DOTA,Tyr(3)]octreotate.

View Article and Find Full Text PDF

Fifty patients with somatostatin receptor-positive tumors were treated with multiple doses of [(111)In-diethylenetriamine pentaacetic acid(0)]octreotide. Forty patients were evaluable after cumulative doses of at least 20 GBq up to 160 GBq. Therapeutic effects were seen in 21 patients: partial remission in 1 patient, minor remissions in 6 patients, and stabilization of previously progressive tumors in 14 patients.

View Article and Find Full Text PDF