Publications by authors named "Wostl W"

A series of amides bearing a variety of amidine head groups was investigated as BACE1 inhibitors with respect to inhibitory activity in a BACE1 enzyme as well as a cell-based assay. Determination of their basicity as well as their properties as substrates of P-glycoprotein revealed that a 2-amino-1,3-oxazine head group would be a suitable starting point for further development of brain penetrating compounds for potential Alzheimer's disease treatment.

View Article and Find Full Text PDF

An extensive fluorine scan of 1,3-oxazines revealed the power of fluorine(s) to lower the pKa and thereby dramatically change the pharmacological profile of this class of BACE1 inhibitors. The CF3 substituted oxazine 89, a potent and highly brain penetrant BACE1 inhibitor, was able to reduce significantly CSF Aβ40 and 42 in rats at oral doses as low as 1 mg/kg. The effect was long lasting, showing a significant reduction of Aβ40 and 42 even after 24 h.

View Article and Find Full Text PDF

A hydroxamic acid screening hit 1 was elaborated to 5,5-dimethyl-2-oxoazepane derivatives exhibiting low nanomolar inhibition of gamma-secretase, a key proteolytic enzyme involved in Alzheimer's disease. Early ADME data showed a high metabolic clearance for the geminal dimethyl analogs which could be overcome by replacement with the bioisosteric geminal difluoro group. Synthesis and structure-activity relationship are discussed and in vivo active compounds are presented.

View Article and Find Full Text PDF

The expression and function in growth and apoptosis of the renin-angiotensin system (RAS) was evaluated in human glioblastoma. Renin and angiotensinogen (AGT) mRNAs and proteins were found by in situ hybridisation and immunohistochemistry in glioblastoma cells. Angiotensinogen was present in glioblastoma cystic fluids.

View Article and Find Full Text PDF

Non-peptidomimetic renin inhibitors of the piperidine type represent a novel structural class of compounds potentially free of the drawbacks seen with peptidomimetic compounds so far. Synthetic optimization in two structural series focusing on improvement of potency, as well as on physicochemical properties and metabolic stability, has led to the identification of two candidate compounds 14 and 23. Both display potent and long-lasting blood pressure lowering effects in conscious sodium-depleted marmoset monkeys and double transgenic rats harboring both the human angiotensinogen and the human renin genes.

View Article and Find Full Text PDF

Piperidine renin inhibitors with heterocyclic core modifications or hydrophilic attachments show improved physical properties (lower lipophilicity, improved solubility). Tetrahydroquinoline derivative rac-30 with a molecular weight of 517 and a log D(pH 7.4) of 1.

View Article and Find Full Text PDF

The identification, synthesis and activity of a novel class of piperidine renin inhibitors is presented. The most active compounds show activities in the picomolar range and are among the most potent renin inhibitors ever identified.

View Article and Find Full Text PDF

Background: The aspartic proteinase renin catalyses the first and rate-limiting step in the conversion of angiotensinogen to the hormone angiotensin II, and therefore plays an important physiological role in the regulation of blood pressure. Numerous potent peptidomimetic inhibitors of this important drug target have been developed, but none of these compounds have progressed past clinical phase II trials. Limited oral bioavailability or excessive production costs have prevented these inhibitors from becoming new antihypertensive drugs.

View Article and Find Full Text PDF

The present study characterizes the new transition-state renin inhibitor ciprokiren (Ro 44-9375) in squirrel monkeys. Arterial blood pressure was monitored by telemetry in freely moving, chronically instrumented conscious animals. In vitro at pH 7.

View Article and Find Full Text PDF

Racemic ethyl 2-benzyl-3-(tert-butylsulfonyl)propionate (1) and racemic ethyl 2-benzyl-3-[[1-methyl-1-((morpholin-4-yl)carbonyl)ethyl]sulfonyl] propionate (3) were enantioselectively hydrolyzed by subtilisin Carlsberg generating the respective (S)-acids used as building blocks for renin inhibitors. The esters were readily converted as emulsions at elevated temperature, in a suspended form or a two-phase-liquid system. The enzyme maintained its excellent selectivity and a good activity also at high initial substrate concentrations (up to 50% w/w).

View Article and Find Full Text PDF

The goal of the present study was to characterize the new renin inhibitor Ro 42-5892 in vitro and in vivo. In vitro, Ro 42-5892 inhibited purified human renin and human plasma renin specifically with an IC50 of 0.7 nM and 0.

View Article and Find Full Text PDF