Publications by authors named "Wosikowski K"

Docetaxel is a microtubule-stabilizing drug used for the treatment of several cancers, including prostate cancer. Resistance to docetaxel can either occur through intrinsic resistance or develop under therapeutic pressure, i.e.

View Article and Find Full Text PDF

Objective: TGF-β2 (TGF-β, transforming growth factor beta), the less-investigated sibling of TGF-β1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-β2 in biliary-derived liver diseases.

Design: As we also found upregulated in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-β2 in early stage biliary liver disease using the MDR2-KO mice.

View Article and Find Full Text PDF

Purpose: To evaluate the safety and tolerability of intravitreal ISTH0036, an antisense oligonucleotide selectively targeting transforming growth factor beta 2 (TGF-β2), in patients with primary open angle glaucoma (POAG) undergoing trabeculectomy (TE; glaucoma filtration surgery).

Methods: In this prospective phase I trial glaucoma patients scheduled for TE with mitomycin C (MMC) received a single intravitreal injection of ISTH0036 at the end of surgery in escalating total doses of 6.75 μg, 22.

View Article and Find Full Text PDF

Background: The transforming growth factor (TGF)-β pathway is a well-described inducer of immunosuppression and can act as an oncogenic factor in advanced tumors. Several preclinical and clinical studies show that the TGF-β pathway can be considered a promising molecular target for cancer therapy. The human genome has three TGF-β isoforms and not much is known about the oncogenic response to each of the isoforms.

View Article and Find Full Text PDF

Background/purpose: Acute bronchitis (AB) is a common lung condition characterized by inflammation of the large bronchi in response to infection. Bronchipret(®) syrup (BRO), a fixed combination of thyme and ivy extracts has been effectively used for the treatment of AB. Combining in vivo and mechanistic in vitro studies we aimed to provide a better understanding of the therapeutic potential of BRO on key aspects of AB and to identify potential mechanisms of action.

View Article and Find Full Text PDF

The literature on TGF-ß in cancer including data on the expression or activation of TGF-ß pathway components in specific tumors types is steadily growing. However, no systematic and uniform analysis exists reporting expression levels of the main TGF-ß pathway components across the most frequent tumor types. We used a standardized immunohistochemical assay investigating TGF-ß isoform expression and pathway activation across 13 different tumor types and corresponding non-neoplastic tissues.

View Article and Find Full Text PDF

Unlabelled: The active metabolite (JM118) of the oral platinum analog satraplatin (JM216) was investigated for potential synergism with erlotinib, an epidermal growth factor receptor (EGFR) inhibitor. JM118 sensitivity of 7 cancer cell lines (ovarian: 2008, A2780; colon: Lovo92, WiDr; lung: A549, SW1573; epidermoid: A431), was enhanced most pronounced when JM118 preceded erlotinib, which was associated with increased formation of DNA-platinum adducts. The combination increased G2/M phase accumulation and enhanced apoptosis.

View Article and Find Full Text PDF

Purpose: Satraplatin is an orally available platinum analog. The purpose of this study was to better characterize satraplatin's preclinical antitumor efficacy in a variety of sensitive and resistant human tumor cell lines and in a prostate cancer xenograft model and to evaluate the effect of satraplatin on PSA expression and/or secretion in a prostate cancer cell line.

Methods: Satraplatin and its primary metabolite JM-118 were preclinically tested for their cytotoxic activity in a range of cancer cells including: human prostate, those forming the NCI drug screening panel, and those resistant to anti-cancer drugs.

View Article and Find Full Text PDF

The overall survival rate of patients suffering from carcinomas has remained poor and nearly unchanged over the last decades. This is mainly due to the so-called minimal residual disease, i.e.

View Article and Find Full Text PDF

To avoid systemic toxicity of the cytotoxic drug methotrexate (MTX) and to improve tumor selectivity, MTX was bound to human serum albumin (HSA) as a drug carrier. To understand more about the mechanism of action of MTX conjugated to HSA (MTX-HSA), the uptake of MTX-HSA into the cell was determined as well as the effect of MTX-HSA on thymidylate synthase (TS), cell cycle distribution, and cell proliferation. Different uptake kinetics were observed for [(3)H]MTX and [(3)H]MTX-HSA.

View Article and Find Full Text PDF

Pemphigus is an autoimmune blistering disease of the skin and mucous membranes. It is caused by autoantibodies directed against desmosomes, which are the principal adhesion structures between epidermal keratinocytes. Binding of autoantibodies leads to the destruction of desmosomes resulting in the loss of cell-cell adhesion (acantholysis) and epidermal blisters.

View Article and Find Full Text PDF

We recently developed a class of novel antitumor agents that elicit a potent growth-inhibitory response in many tumor cells cultured in vitro. WK175, a member of this class, was chosen as a model compound that showed strong in vitro efficacy. WK175 interferes with the intracellular steady-state level of NAD(+), resulting in a decreased cellular NAD(+) concentration.

View Article and Find Full Text PDF

We examined transforming growth factor (TGF) alpha, epidermal growth factor (EGF) and EGF receptor (EGFR) expression and signaling in three drug resistant MCF-7 human breast cancer sublines and asked whether these pathways contribute to the drug resistance phenotype. In the resistant sublines, upregulation of both TGFalpha and EGFR mRNA was observed. In an apparent contrast with upregulated growth factor and receptor gene expression, the drug resistant sublines displayed a reduced growth rate.

View Article and Find Full Text PDF

It is increasingly recognized that drug-resistant cells undergo transitions not directly linked to "classical" drug resistance. We examined the expression of growth factors, growth factor receptors, and the estrogen receptor in 17 drug-resistant and 2 revertant human breast cancer sublines to provide an understanding of the phenotypic changes that occur and how these changes could affect the biology of the cell. These sublines were derived from five parental human breast cancer cell lines (MCF-7, ZR75B, T47D, MDA-MB-231, and MDA-MB-453).

View Article and Find Full Text PDF

Background: Growth factor receptor-signaling pathways are potentially important targets for anticancer therapy. The interaction of anticancer agents with specific molecular targets can be identified by correlating target expression patterns with cytotoxicity patterns. We sought to identify new agents that target and inhibit the activity of the epidermal growth factor (EGF) receptor and of c-erbB2 (also called HER2 or neu), by correlating EGF receptor, transforming growth factor (TGF)-alpha (a ligand for EGF receptor), and c-erbB2 messenger RNA (mRNA) expression levels with the results of cytotoxicity assays of the 49000 compounds in the National Cancer Institute (NCI) drug screen database.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) and its receptors are necessary for the survival and development of many neuronal cells. Because BDNF and TrkB are expressed in many poor-prognosis neuroblastoma (NB) tumors, we evaluated the role of BDNF in affecting sensitivity to chemotherapeutic agents. We investigated the effects of activation of the BDNF-TrkB signal transduction pathway in two NB cell lines, 15N and SY5Y.

View Article and Find Full Text PDF

Abnormalities in the p53 tumor suppressor gene have been shown to affect cellular processes related to cell cycle control and gene amplification. In this study we compare the status and function of wild-type p53 in MCF-7 breast cancer cells with sublines selected for resistance to chemotherapeutic agents having different mechanisms of action. Sublines that were resistant to melphalan, pyrazafurin, mitoxantrone, etoposide and PALA all retained expression of wild-type p53.

View Article and Find Full Text PDF

Loss of or mutations in p53 protein have been shown to decrease both radio- and chemosensitivity. The present study assessed the p53 gene status, ability to arrest in G1 of the cell cycle, the functionality of the p53 transduction pathway, and apoptosis following treatment with radiation in a series of drug-resistant human breast cancer cells to determine whether p53 alterations occur during the development of drug resistance. We used 13 sublines derived from MCF-7, ZR75B, and T47D cells, which were resistant to doxorubicin, paclitaxel, vinblastine, cisplatin, etoposide, and amsacrine.

View Article and Find Full Text PDF

Human breast cancer cells selected for multidrug resistance frequently overexpress ligands and receptors in the epidermal growth factor (EGF) receptor family. To determine whether this overexpression contributes to the drug resistant phenotype, EGF receptor transfected ZR75B human breast cancer cells were examined. Two EGF receptor overexpressing clones were evaluated: clone 11 with > 1 x 10(6) sites, and clone 13 with 310,000 receptor sites/cell.

View Article and Find Full Text PDF

In breast cancer, hormone dependency is inversely correlated with the number of surface epidermal-growth-factor (EGF) receptors on the tumor cells. In vitro, EGF stimulated only hormone-dependent immortalized human breast cancer cells to grow with an increased rate whereas hormone-independent cells were not affected by EGF. The number of EGF surface receptors is about 5-10-times smaller on hormone-dependent cells than on hormone-independent cells.

View Article and Find Full Text PDF

We examined the expression of the estrogen and epidermal growth factor (EGF) receptors in a drug-resistant subline of MCF-7 cells in order to study potential alterations in hormone dependence or in the growth factor pathway that could be related to the development of drug resistance in human breast cancer. The drug-resistant subline was derived from MCF-7 cells by selection with Adriamycin in the presence of the P-glycoprotein antagonist, verapamil, to prevent acquisition of the classical multidrug resistance phenotype. The Adriamycin-resistant cells retain estrogen-binding, estrogen-responsive monolayer growth, and estrogen-dependent tumorigenesis.

View Article and Find Full Text PDF

Recently, it was reported that the anti-estrogen tamoxifen not only inhibits estradiol-stimulated growth of MCF-7 cells but also significantly reduces the proliferation rate of cells stimulated by growth factors. We have confirmed this finding and also shown that the new anti-estrogen droloxifene inhibits the proliferation of epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I)-stimulated MCF-7 cells. The growth-factor-induced proliferation was inhibited in a dose-dependent manner by the anti-estrogens in the complete absence of estrogen and FCS.

View Article and Find Full Text PDF

Insulin-like growth factor I (IGF-I) was 3 times more potent in pagating MCF-7 cell proliferation than epidermal growth factor (EGF). IGF-I stimulated c-fos mRNA expression about 5 times less than EGF. Both growth factors were equipotent in inducing c-jun and c-myc mRNA expressions.

View Article and Find Full Text PDF

Pharmacologic investigations with droloxifene in vitro and in vivo revealed that droloxifene is a more efficient antiestrogen than tamoxifen. Droloxifene differs from tamoxifen in the following ways: it has a more than 10-fold higher binding affinity to the estrogen receptor; it shows lower estrogenic and higher antiestrogenic effects on rat uterus, indicating a higher therapeutic index; it more potently inhibits growth of various human ER-positive mammary carcinoma cell lines; short-term exposures with clinically relevant concentrations of droloxifene produce long-term growth inhibition of human ER-positive cancer cells and are more effective than continuous treatment with tamoxifen; it more effectively reduces S-phases and arrests ER-positive cells in G1-phase of the cell cycle; it antagonizes estrogen independent, growth factor stimulated proliferation of MCF-7 cells with higher efficiency; it blocks estrogen activated c-myc expression better than tamoxifen; it more effectively inhibits growth of various experimental tumors of animal (R 3230, DMBA) and human (T61) origin. Therefore, in all experimental systems, it was found that droloxifene is a more potent antiestrogen than tamoxifen.

View Article and Find Full Text PDF