Amyloid oligomers are considered to play essential roles in the pathogenesis of amyloid-related degenerative diseases including type 2 diabetes. Using an explicit solvent all atomic MD simulation, we explored the stability, conformational dynamics and association force of different single-layer models of the full-length wild-type and glycine mutants of amylin (pentamer) obtained from a recent high resolution fibril model. The RMSF profile shows enhanced flexibility in the disorder (Lys1-Cys7) and turn region (Ser19-Gly23), along with smallest fluctuation at the residues (Asn14-Phe15-Leu16-Val17-His18) of β1 region and (Ala25-Ile26-Leu27-Ser28-Ser29) of the β2 region.
View Article and Find Full Text PDFInsulin is a hormone that regulates the physiological glucose level in human blood. Insulin injections are used to treat diabetic patients. The amyloid aggregation of insulin may cause problems during the production, storage, and delivery of insulin formulations.
View Article and Find Full Text PDFMost proteins do not aggregate while in their native functional states. However, they may be disturbed from their native conformation by certain change in the environment, and form unwanted oligomeric or polymeric aggregates. Recent experimental data demonstrate that soluble oligomers of amyloidogenic proteins are responsible for amyloidosis and its cytotoxicity.
View Article and Find Full Text PDFThe aggregation modes of hexapeptide fragments of Tau, Insulin and Aβ peptide (VQIVYK, MVGGVV and LYQLEN) were found from their microcrystalline structures that had been recently resolved by X-ray analysis. The atomic structures reveal a dry self-complementary interface between the neighboring β-sheet layers, termed "steric zipper". In this study we perform several all-atom molecular dynamics simulations with explicit water to analyze stability of the crystalline fragments of 2-10 hexapeptides each and their analogs with single glycine replacement mutations to investigate the structural stability, aggregation behavior and thermodynamic of the amyloid oligomers.
View Article and Find Full Text PDFWe report density functional theory (DFT) calculations of the Raman spectra for hexapeptides of glutamic acid and lysine in three different conformations (alpha, beta and PPII). The wave numbers of amide I, amide II and amide III bands of all three conformations predicted at B3LYP/6-31G and B3LYP/6-31G* are in good agreement with previously reported experimental values of polyglutamic acid and polylysine. Agreement with experiment improves when polarization functions are included in the basis set.
View Article and Find Full Text PDF