Using the atomistic tight-binding model plus sp-d exchange term, the embedding of magnetic ions into CdSe/CdMnS core/shell nanoplatelets (NPLs) at different effective temperatures resulted in sp-d exchange interactions, which in turn cause modifications in electronic and magnetic characteristics. The influence of CdMnS monolayers on single-particle spectra, optical band gaps, wave function overlaps and exciton binding energies is more pronounced than that of the effective temperature. Due to the electron, hole and Zeeman splitting energies, with the growth of CdMnS shell monolayers, electron -factor values are unchanged, but hole and exciton -factor values are enhanced.
View Article and Find Full Text PDFTwo interacting double quantum dots (DQDs) can be suitable candidates for operation in the applications of quantum information processing and computation. In this work, DQDs are modeled by the heterostructure of two-dimensional (2D) MoS having 1T-phase embedded in 2H-phase with the aim to investigate the feasibility of controlled-NOT (CNOT) gate operation with the Coulomb interaction. The Hamiltonian of the system is constructed by two models, namely the 2D electronic potential model and the 4×4 matrix model whose matrix elements are computed from the approximated two-level systems interaction.
View Article and Find Full Text PDF