Semitransparent perovskite solar cells (PSCs) efficiently absorb light from both front and rear sides under illumination, and hence, PSCs have the potential for use in applications requiring bifacial or tandem solar cells. A facile method to fabricate semitransparent PSCs involves preparing a perovskite (PVSK) film on two transparent substrates and then laminating the substrates together. However, realizing high-performance laminated semitransparent PSCs is challenging because the imperfect contact at the PVSK interlayer results in void formation and partial degradation of PVSK.
View Article and Find Full Text PDFLateral flow assay (LFA) systems use metal nanoparticles for rapid and convenient target detection and are extensively studied for the diagnostics of various diseases. Gold nanoparticles (AuNPs) are often used as probes in LFAs, displaying a single red color. However, there is a high demand for colorimetric LFAs to detect multiple biomarkers, requiring the use of multicolored NPs.
View Article and Find Full Text PDFPerovskite single-crystal thin films (SCTFs) have emerged as a significant research hotspot in the field of optoelectronic devices owing to their low defect state density, long carrier diffusion length, and high environmental stability. However, the large-area and high-throughput preparation of perovskite SCTFs is limited by significant challenges in terms of reducing surface defects and manufacturing high-performance devices. This review focuses on the advances in the development of perovskite SCTFs with a large area, controlled thickness, and high quality.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Perovskite-based tandem solar cells are promising candidates for next-generation photovoltaic devices. However, the defects caused by ion migration cause a large deficit of open-circuit voltage () in conventional wide-band-gap perovskite films. Here, we present a new strategy that employs nontoxic acetic acid and isopropanol as solvents to deposit a perovskite film with a 2.
View Article and Find Full Text PDFThe nanoscale spatiotemporal resolution of single-particle tracking (SPT) renders it a powerful method for exploring single-molecule dynamics in living cells or tissues, despite the disadvantages of using traditional organic fluorescence probes, such as the weak fluorescent signal against the strong cellular autofluorescence background coupled with a fast-photobleaching rate. Quantum dots (QDs), which enable tracking targets in multiple colors, have been proposed as an alternative to traditional organic fluorescence dyes; however, they are not ideally suitable for applying SPT due to their hydrophobicity, cytotoxicity, and blinking problems. This study reports an improved SPT method using silica-coated QD-embedded silica nanoparticles (QD), which represent brighter fluorescence and are less toxic than single QDs.
View Article and Find Full Text PDFCancer cells have various immune evasion mechanisms that resist the immune cells by reprogramming the tumor microenvironment (TME), such as programmed death-ligand 1 (PD-L1) and indoleamine 2,3-dioxygenase-1 (IDO1) overexpression. One of the approaches to restore antitumor immune response by T-cells is through induction of immunogenic cell death (ICD). Thus, drug carrier containing IDO1 siRNA and ICD inducer would be effective anticancer regimen to modulate the immunosuppressive TME by reversing the IDO1-mediated immunosuppression in a synergistic combination with ICD induction.
View Article and Find Full Text PDFBimetallic nanoparticles are important materials for synthesizing multifunctional nanozymes. A technique for preparing gold-platinum nanoparticles (NPs) on a silica core template (SiO@Au@Pt) using seed-mediated growth is reported in this study. The SiO@Au@Pt exhibits peroxidase-like nanozyme activity has several advantages over gold assembled silica core templates (SiO@Au@Au), such as stability and catalytic performance.
View Article and Find Full Text PDFBackground: To take advantages, such as multiplex capacity, non-photobleaching property, and high sensitivity, of surface-enhanced Raman scattering (SERS)-based in vivo imaging, development of highly enhanced SERS nanoprobes in near-infrared (NIR) region is needed. A well-controlled morphology and biocompatibility are essential features of NIR SERS nanoprobes. Gold (Au)-assembled nanostructures with controllable nanogaps with highly enhanced SERS signals within multiple hotspots could be a breakthrough.
View Article and Find Full Text PDFBackground: Quantum dots (QDs) have been used as fluorophores in various imaging fields owing to their strong fluorescent intensity, high quantum yield (QY), and narrow emission bandwidth. However, the application of QDs to bio-imaging is limited because the QY of QDs decreases substantially during the surface modification step for bio-application.
Results: In this study, we fabricated alloy-typed core/shell CdSeZnS/ZnS quantum dots (alloy QDs) that showed higher quantum yield and stability during the surface modification for hydrophilization compared with conventional CdSe/CdS/ZnS multilayer quantum dots (MQDs).
Hydrogen peroxide (HO) plays important roles in cellular signaling and in industry. Thus, the accurate detection of HO is critical for its application. Unfortunately, the direct detection of HO by surface-enhanced Raman spectroscopy (SERS) is not possible because of its low Raman cross section.
View Article and Find Full Text PDFThe precise synthesis of fine-sized nanoparticles is critical for realizing the advantages of nanoparticles for various applications. We developed a technique for preparing finely controllable sizes of gold nanoparticles (Au NPs) on a silica template, using the seed-mediated growth and interval dropping methods. These Au NPs, embedded on silica nanospheres (SiO@Au NPs), possess peroxidase-like activity as nanozymes and have several advantages over other nanoparticle-based nanozymes.
View Article and Find Full Text PDFQuantum dots (QDs) are semiconductor nanoparticles with outstanding optoelectronic properties. More specifically, QDs are highly bright and exhibit wide absorption spectra, narrow light bands, and excellent photovoltaic stability, which make them useful in bioscience and medicine, particularly for sensing, optical imaging, cell separation, and diagnosis. In general, QDs are stabilized using a hydrophobic ligand during synthesis, and thus their hydrophobic surfaces must undergo hydrophilic modification if the QDs are to be used in bioapplications.
View Article and Find Full Text PDFProstate-specific antigen (PSA) is the best-known biomarker for early diagnosis of prostate cancer. For prostate cancer in particular, the threshold level of PSA <4.0 ng/mL in clinical samples is an important indicator.
View Article and Find Full Text PDFPolyphenol oxidase (PPO) is an important quality index during food processing involving heat-treatment and sensitive determination of PPO activity has been a critical concern in the food industry. In this study, a new measurement of PPO activity exploiting an optical waveguide lightmode spectroscopy-based immunosensor is presented using a polyclonal anti-PPO antibody that was immobilized in situ to the surface of a 3-aminopropyltriethoxysilane-treated optical grating coupler activated with glutaraldehyde. When analysed with a purified PPO fraction from potato tubers, a linear relationship was found between PPO activities of 0.
View Article and Find Full Text PDFAsian populations contain a variety of ethnic groups that have ethnically specific genetic differences. Ethnic variants may be highly relevant in disease and human differentiation studies. Here, we identified ethnically specific variants and then investigated their distribution across Asian ethnic groups.
View Article and Find Full Text PDFJ Ginseng Res
March 2013
Polyphenol oxidase (PPO) was purified from fresh ginseng roots using acetone precipitation, carboxymethyl (CM)-Sepharose chromatography, and phenyl-Sepharose chromatography. Two isoenzymes (PPO 1 and PPO 2) were separated using an ion-exchange column with CM-Sepharose. PPO 1 was purified up to 13.
View Article and Find Full Text PDFFor the robust practice of genomic medicine, sequencing results must be compatible, regardless of the sequencing technologies and algorithms used. Presently, genome sequencing is still an imprecise science and is complicated by differences in the chemistry, coverage, alignment, and variant-calling algorithms. We identified ~3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2010
The genome of soybean (Glycine max), a commercially important crop, has recently been sequenced and is one of six crop species to have been sequenced. Here we report the genome sequence of G. soja, the undomesticated ancestor of G.
View Article and Find Full Text PDFNumerous genetic variations have been found to be related to human diseases. Significant portion of those affect the drug response as well by changing the protein structure and function. Therefore, it is crucial to understand the trilateral relationship among genomic variations, diseases and drugs.
View Article and Find Full Text PDFBackground: The first Korean individual diploid genome sequence data (KOREF) was publicized in December 2008.
Results: A Korean genome variation analysis and browsing server (Gevab) was constructed as a database and web server for the exploration and downloading of Korean personal genome(s). Information in the Gevab includes SNPs, short indels, and structural variation (SV) and comparison analysis between the NCBI human reference and the Korean genome(s).
Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders, clinically characterized by impaired motor function. Since the etiology of PD is diverse and complex, many researchers have created PD-related research resources. However, resources for brain and PD studies are still lacking.
View Article and Find Full Text PDFBackground: Mitochondrial sequence variation provides critical information for studying human evolution and variation. Mitochondrial DNA provides information on the origin of humans, and plays a substantial role in forensics, degenerative diseases, cancers, and aging process. Typically, human mitochondrial DNA has various features such as HVSI, HVSII, single-nucleotide polymorphism (SNP), restriction enzyme sites, and short tandem repeat (STR).
View Article and Find Full Text PDFAsia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography.
View Article and Find Full Text PDFDeep sequencing has shown that over 90% of human genes undergo alternative splicing. The splicing process requires exon-intron boundary recognition. SNPs located in the boundaries (splice sites) influence exon configuration.
View Article and Find Full Text PDF