Publications by authors named "Woonjin Choi"

In this study, ultrahigh-molecular-weight (MW) (>10Da) cationic polyacrylamides (C-PAMs), which are water-soluble polymers used in waste water treatment, were characterized using frit-inlet asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and differential refractive detection. C-PAMs copolymerized with acryloxyethyltrimethyl ammonium chloride (DAC) were prepared by varying the feed amount of cationic monomer, polymerization method (solution vs. emulsion), and degree of branching.

View Article and Find Full Text PDF

In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations.

View Article and Find Full Text PDF