Electrohydrodynamic (EHD) jet printing is known as a versatile method to print a wide viscosity range of materials that are impossible to print by conventional inkjet printing. Hence, with the understanding of the benefits of EHD jet printing, solution-based MoS and a high-viscosity Ag paste were EHD jet-printed for electronic applications in this work. In particular, printed MoS TFTs with a patterned Ag source and drain were successfully fabricated with low-k silica (SiO) and high-k alumina (AlO) gate dielectrics, respectively.
View Article and Find Full Text PDFTransition metal dichalcogenide-based thin-film transistors (TFTs) have drawn intense research attention, but they suffer from high cost of materials and complex methods. Directly printed transistors have been in the limelight due to low cost and an environmentally friendly technique. An electrohydrodynamic (EHD) jet printing technique was employed to pattern both MoS active layer and Ag source and drain (S/D) electrodes.
View Article and Find Full Text PDFSolution synthesis of MoSprecursor followed by direct printing could be an effective way to make printed electronic devices. A linear MoSpattern was obtained by an electrohydrodynamic (EHD)-jet printer with a sol-gel system without chemical vapor deposition. The morphology of the MoSafter a transfer process was maintained without wrinkles or cracking, resulting in a smooth surface compared with that of spin-coated films.
View Article and Find Full Text PDFA novel electrohydrodynamic (EHD) electrospray coating mechanism was proposed for the continuous fabrication of large-area quantum dot (QD) thin films for high-performance light-emitting diodes (LEDs). The size of QD droplets was systemically controlled using the stable EHD electrospray mode from a mixed solvent, which is a crucial factor for the formation of large and smooth QD thin films. The minimum amount of material consumption was achieved during the process by applying the unique coating system.
View Article and Find Full Text PDFThe electrohydrodynamic (EHD) jet spraying process is a good method for making quantum dot (QD) layers in light-emitting diodes (LEDs). However, controlling the morphology and large-scale fabrication of the QD layers are critical for realizing all-solution-processed QD-LEDs with high performance. Three spraying techniques were used with the EHD jet spraying technique: a big circular film method, a spiral-line method, and a straight-line method.
View Article and Find Full Text PDFElectrohydrodynamic (EHD) jet printing has a variety of benefits compared to conventional inkjet techniques, such as high resolution and the ability to work with high-viscosity pastes. In this work, Ag nanoparticles with 4000 cPs were chosen because they are printable on various substrates for electronic devices. The effects of additive on the high-viscosity Ag paste formulation were investigated, and pattern lines narrower than 100 μm were achieved by EHD-jet printing with an average sheet resistance of 0.
View Article and Find Full Text PDFIn this study, a solution-processed synthesis method was developed and successfully synthesized large-scale and uniform MoS thin films without using chemical vapor deposition. The MoS precursor solution was formulated by a sulfur-dissolving method to obtain uniform coating properties. MoS thin film was prepared by simple spin-coating and a one-step annealing method.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
March 2019
Colloidal quantum-dot based light-emitting diodes (QD-LEDs) are attractive for use in display devices because of the remarkable electrical and optical characteristics of colloidal quantum dots. An inverted structure may be one method to achieve the necessary multilayer device structures in QD-LEDs. In this study, each layer of an inverted-structure QD-LED was optimized.
View Article and Find Full Text PDFSolution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model.
View Article and Find Full Text PDFThere is a high demand for a non-invasive, rapid, and highly accurate tool for disease diagnostics. Recently, saliva based diagnostics for the detection of specific biomarkers has drawn significant attention since the sample extraction is simple, cost-effective, and precise. Compared to blood, saliva contains a similar variety of DNA, RNA, proteins, metabolites, and microbiota that can be compiled into a multiplex of cancer detection markers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2014
Zinc-tin oxide (ZTO) thin-film transistors (TFTs) were fabricated using an electrohydrodynamic-jet (EHD-jet) printing technique at annealing temperatures ranging from 300 to 500 °C. An EHD-jet-printed ZTO active layer was patterned with a 60 μm width using a 100 μm inner diameter metal nozzle. The electrical properties of an EHD-jet-printed ZTO TFT showed a mobility of 9.
View Article and Find Full Text PDFThin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body.
View Article and Find Full Text PDFHigh-performance In2O3 thin-film transistors could be prepared by an inkjet-printing method below 200 °C with a single precursor and solvent formulation. The self-combustion reaction took place with the electrical properties of In2O3 at a low temperature of 147 °C, which was confirmed by X-ray photoelectron spectroacopy and thermal analysis. The electrical properties after postannealing at 200 °C were as follows: a mobility of 3.
View Article and Find Full Text PDFWe report the development of solution-processed zinc oxide (ZnO) transparent thin-film transistors (TFTs) with a poly(2-hydroxyethyl methacrylate) (PHEMA) gate dielectric on a plastic substrate. The ZnO nanorod film active layer, prepared by microwave heating, showed a highly uniform and densely packed array of large crystal size (58 nm) in the [002] direction of ZnO nanorods on the plasma-treated PHEMA. The flexible ZnO TFTs with the plasma-treated PHEMA gate dielectric exhibited an electron mobility of 1.
View Article and Find Full Text PDF