The salient features of autism spectrum disorder (ASD) encompass persistent difficulties in social communication, as well as the presence of restricted and repetitive facets of behavior, hobbies, or pursuits, which are often accompanied with cognitive limitations. Over the past few decades, a sizable number of studies have been conducted to enhance our understanding of the pathophysiology of ASD. Preclinical rat models have proven to be extremely valuable in simulating and analyzing the roles of a wide range of established environmental and genetic factors.
View Article and Find Full Text PDFAquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes.
View Article and Find Full Text PDFBackground: Tissue organoids generated from human pluripotent stem cells are valuable tools for disease modelling and to understand developmental processes. While recent progress in human cardiac organoids revealed the ability of these stem cell-derived organoids to self-organize and intrinsically formed chamber-like structure containing a central cavity, it remained unclear the processes involved that enabled such chamber formation.
Methods: Chambered cardiac organoids (CCOs) differentiated from human embryonic stem cells (H7) were generated by modulation of Wnt/ß-catenin signalling under fully defined conditions, and several growth factors essential for cardiac progenitor expansion.
Accurate modeling of the heart electrophysiology to predict arrhythmia susceptibility remains a challenge. Current electrophysiological analyses are hypothesis-driven models drawing conclusions from changes in a small subset of electrophysiological parameters because of the difficulty of handling and understanding large datasets. Thus, we develop a framework to train machine learning classifiers to distinguish between healthy and arrhythmic cardiomyocytes using their calcium cycling properties.
View Article and Find Full Text PDFMedical research in the recent years has achieved significant progress due to the increasing prominence of organoid technology. Various developed tissue organoids bridge the limitations of conventional 2D cell culture and animal models by recapitulating cellular complexity. Current 3D cardiac organoid cultures have shown their utility in modelling key developmental hallmarks of heart organogenesis, but the complexity of the organ demands a more versatile model that can investigate more fundamental parameters, such as structure, organization and compartmentalization of a functioning heart.
View Article and Find Full Text PDFThe immature characteristics and metabolic phenotypes of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) restrict their applications for disease modeling, drug discovery, and cell-based therapy. Leveraging on the metabolic shifts from glycolysis to fatty acid oxidation as CMs mature, a human hexokinase1-GFP metabolic reporter cell line (H7 HK1-GFP) was generated to facilitate the isolation of fetal or more matured hPSC-CMs. RNA sequencing of fetal versus more matured CMs uncovered a potential role of interferon-signaling pathway in regulating CM maturation.
View Article and Find Full Text PDFBlood reprogramming, in which induced pluripotent stem cells (iPSCs) are derived from haematopoietic lineages, has rapidly advanced over the past decade. Since the first report using human blood, haematopoietic cell types from various sources, such as the peripheral bone marrow and cord blood, have been successfully reprogrammed. The volume of blood required has also decreased, from around tens of millilitres to a single finger-prick drop.
View Article and Find Full Text PDFGenome editing has been well established as a genome engineering tool that enables researchers to establish causal linkages between genetic mutation and biological phenotypes, providing further understanding of the genetic manifestation of many debilitating diseases. More recently, the paradigm of genome editing technologies has evolved to include the correction of mutations that cause diseases via the use of nucleases such as zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs), and more recently, Cas9 nuclease. With the aim of reversing disease phenotypes, which arise from somatic gene mutations, current research focuses on the clinical translatability of correcting human genetic diseases in vivo, to provide long-term therapeutic benefits and potentially circumvent the limitations of in vivo cell replacement therapy.
View Article and Find Full Text PDFPluripotent stem cells are uniquely positioned for regenerative medicine, but their clinical potential can only be realized if their tumorigenic tendencies are decoupled from their pluripotent properties. Deploying small molecules to remove remnant undifferentiated pluripotent cells, which would otherwise transform into teratomas and teratomacarcinomas, offers several advantages over non-pharmacological methods. Dioxonapthoimidazolium YM155, a survivin suppressant, induced selective and potent cell death of undifferentiated stem cells.
View Article and Find Full Text PDFExisting zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor.
View Article and Find Full Text PDFThe increasing use of silver (Ag) and titanium dioxide (TiO2) nanoparticles (NPs) in consumer products and their inevitable seepage into the environment prompted us to investigate their potential toxicity to a fish cell line (BF-2) and zebrafish embryos under dark and Simulated Solar Light (SSL) exposure conditions. Using high throughput screening (HTS) platforms, we showed that the oxidative stress-dependent cytotoxicity and embryonic toxicity of NPs were significantly increased upon exposure to SSL. While, the toxicity of TiO2 NPs under SSL exposure could be explained by hydroxyl radical generation, the enhanced toxicity of Ag NPs under SSL exposure was due to surface oxidation and physicochemical modification of Ag NPs and shedding of Ag+, leading to an increased bioavailability of silver.
View Article and Find Full Text PDFA major concern in Pluripotent Stem Cell (PSC)-derived cell replacement therapy is the risk of teratoma formation from contaminating undifferentiated cells. Removal of undifferentiated cells from differentiated cultures is an essential step before PSC-based cell therapies can be safely deployed in a clinical setting. We report a group of novel small molecules that are cytotoxic to PSCs.
View Article and Find Full Text PDFClassical non-viral methods of gene transfer, such as chemical transfection, have met with limited success of instillation of genetic material into non-proliferating cells in vitro. Among the different kinds of viral vectors, Lentiviral vectors (LVs) have emerged as robust and versatile tool for ex vivo and in vivo gene delivery into multiple cell types including non-dividing cells such as neurons. The capacity of LVs to maintain stable, long-term transgene expression and the substantial flexibility in the design of the expression cassettes account for their increasing use in various pre-clinical and clinical applications.
View Article and Find Full Text PDFThe human umbilical cord that originates from the embryo is an extra-embryonic membrane and the Wharton's jelly within it is a rich source of stem cells (hWJSCs). It is not definitely known whether these cells behave as human embryonic stem cells (hESCs), human mesenchymal stem cells (hMSC) or both. They have the unique properties of high proliferation rates, wide multipotency, hypoimmunogenicity, do not induce teratomas and have anticancer properties.
View Article and Find Full Text PDFDuring zebrafish embryogenesis, the endothelium signals to emergent bilateral interrenal primordia to converge toward the midline, yet the merged interrenal tissue has been found to be situated lateral to the midline. We show in this study that bilateral interrenal tissue clusters fused at the central midline, before relocating laterally to be juxtaposed between the dorsal aorta and the posterior cardinal vein. In ets1b morphants where the midtrunk vasculature failed to assemble, various degrees of interrenal fusion defects were displayed, and the interrenal laterality was lost.
View Article and Find Full Text PDFpbx1, a TALE (three-amino acid loop extension) homeodomain transcription factor, is involved in a diverse range of developmental processes. We examined the expression of pbx1 during zebrafish development by in situ hybridization. pbx1 transcripts could be detected in the central nervous system and pharyngeal arches from 24 hpf onwards.
View Article and Find Full Text PDFWe describe a three dimensional (3D) anchorage independent in vitro protocol for the prolonged growth of human embryoid bodies (EBs) up to 90 days. We grew hESCs (46XX) in methylcellulose (MC) in motion culture in the presence of EB medium (EB), EB medium with Matrigel (EB + MAT), bulk culture medium (BCM), and BCM medium with Matrigel (BCM + MAT). All four experimental groups produced embryoid bodies (EBs) which with prolonged growth to 90 days acquired blood vessels and tissues from all three germ layers.
View Article and Find Full Text PDFJ Mol Endocrinol
September 2009
The cytochrome P450scc (cholesterol side-chain cleavage enzyme) encoded by CYP11A1 catalyzes the first step in steroidogenesis by converting cholesterol to pregnenolone, and thus, controls the synthesis rate of steroid hormones. In mammals, steroidogenic factor 1 (SF1) has been implicated in the cAMP-mediated transcriptional activation of CYP11A1 promoter. In zebrafish, Ff1b has been established as the homolog of SF1.
View Article and Find Full Text PDFThyroid hormone receptors (TRs) are involved in numerous diverse biological processes such as growth and differentiation, thermogenesis, neurulation, homeostasis, and metamorphosis. In zebrafish, TRbeta1 has been implicated to be involved in the obligatory embryonic-to-larval transitory phase. In order to understand if nuclear receptor coactivators could modulate the transcriptional activities of TRs during this transitory phase, the transcriptionary intermediary factor 2 (TIF2), a member of the p160 coactivator, was isolated from zebrafish.
View Article and Find Full Text PDFSerial analysis of gene expression (SAGE) was used to obtain the transcriptome profiles of a supportive human fetal skin feeder (Detroit 551) and a nonsupportive human fetal lung feeder (MRC-5) for human embryonic stem cells. A pairwise comparison of the two SAGE profiles showed that fibroblast growth factor-2 (FGF2), a bone morphogenetic protein 4 pathway inhibitor, Gremlin 1, and several extracellular matrix proteins that could potentially aid human embryonic stem cell attachment and growth were highly expressed in Detroit 551 fibroblasts.
View Article and Find Full Text PDFSerial analysis of gene expression (SAGE) is a powerful technique for the analysis of gene expression. A significant portion of SAGE tags, designated as orphan tags, however, cannot be reliably assigned to known transcripts. We used an improved reverse SAGE (rSAGE) strategy to convert human embryonic stem cell (hESC)-specific orphan SAGE tags into longer 3' cDNAs.
View Article and Find Full Text PDFHigh genetic diversity is thought to characterize successful invasive species, as the potential to adapt to new environments is enhanced and inbreeding is reduced. In the last century, guppies, Poecilia reticulata, repeatedly invaded streams in Australia and elsewhere. Quantitative genetic studies of one Australian guppy population have demonstrated high additive genetic variation for autosomal and Y-linked morphological traits.
View Article and Find Full Text PDFFushi tarazu factor 1 (Ftz-F1, NR5A) is a zinc-finger transcription factor that belongs to the nuclear receptor superfamily and regulates genes that are involved in sterol and steroid metabolism in gonads, adrenals, liver and other tissues. To understand the evolutionary origins and developmental genetic relationships of the Ftz-F1 genes, we have cloned four homologous Ftz-f1 genes in zebrafish, called ff1a, ff1b, ff1c and ff1d. These four genes have different temporal and spatial expression patterns during development, indicating that they have distinct mechanisms of genetic regulation.
View Article and Find Full Text PDFHuman embryonic stem cells (hESCs) promise to revolutionize reparative medicine through their potential in developing cell replacement therapies for diseases like diabetes and parkinsonism. Most of the existing hESC lines available for research, including all National Institutes of Health-registered lines, have been derived and maintained on mouse embryonic fibroblast feeders in the presence of xenoproteins. For future clinical application, many more hESC lines derived and grown in current good manufacturing practice, good tissue culture practice, and xeno-free conditions need to be developed.
View Article and Find Full Text PDF