Accurate 3D image recognition, critical for autonomous driving safety, is shifting from the LIDAR-based point cloud to camera-based depth estimation technologies driven by cost considerations and the point cloud's limitations in detecting distant small objects. This research aims to enhance MDE (Monocular Depth Estimation) using a single camera, offering extreme cost-effectiveness in acquiring 3D environmental data. In particular, this paper focuses on novel data augmentation methods designed to enhance the accuracy of MDE.
View Article and Find Full Text PDFFor autonomous driving, it is imperative to perform various high-computation image recognition tasks with high accuracy, utilizing diverse sensors to perceive the surrounding environment. Specifically, cameras are used to perform lane detection, object detection, and segmentation, and, in the absence of lidar, tasks extend to inferring 3D information through depth estimation, 3D object detection, 3D reconstruction, and SLAM. However, accurately processing all these image recognition operations in real-time for autonomous driving under constrained hardware conditions is practically unfeasible.
View Article and Find Full Text PDF