Upregulation of TGFβ and Cox2 in the tumor microenvironment results in blockade of T-cell penetration into the tumor. Without access to tumor antigens, the T-cell response will not benefit from administration of the immune checkpoint antibodies. We created an intravenous polypeptide nanoparticle that can deliver two siRNAs (silencing TGFβ and Cox2).
View Article and Find Full Text PDFSurface immobilization of bioactive molecules is a central paradigm in the design of implantable devices and biosensors with improved clinical performance capabilities. However, in vivo degradation or denaturation of surface constituents often limits the long-term performance of bioactive films. Here we demonstrate the capacity to repeatedly regenerate a covalently immobilized monomolecular thin film of bioactive molecules through a two-step stripping and recharging cycle.
View Article and Find Full Text PDFActivated platelets provide a promising target for imaging inflammatory and thrombotic events along with site-specific delivery of a variety of therapeutic agents. Multifunctional protein micelles bearing targeting and therapeutic proteins were now obtained by one-pot transpeptidation using an evolved sortase A. Conjugation to the corona of a single-chain antibody (scFv), which binds to the ligand-induced binding site (LIBS) of activated GPIIb/IIIa receptors, enabled the efficient detection of thrombi.
View Article and Find Full Text PDFBiomaterials produced by nature have been honed through billions of years, evolving exquisitely precise structure-function relationships that scientists strive to emulate. Advances in genetic engineering have facilitated extensive investigations to determine how changes in even a single peptide within a protein sequence can produce biomaterials with unique thermal, mechanical and biological properties. Elastin, a naturally occurring protein polymer, serves as a model protein to determine the relationship between specific structural elements and desirable material characteristics.
View Article and Find Full Text PDFNaturally occurring protein-based materials have been found that function as critical components in biomechanical response, fibers and adhesives. A relatively small but growing number of recombinant protein-based materials that mimic the desired features of their natural sources, such as collagens, elastins and silks, are considered as an alternative to conventional synthetic polymers. Advances in genetic engineering have facilitated the synthesis of repetitive protein polymers with precise control of molecular weights which are designed by using synthetic genes encoding tandem repeats of oligopeptide originating from a modular domain of natural proteins.
View Article and Find Full Text PDFA variety of polymeric nanoparticles have been developed for bioimaging applications. This study reports on the use of a 50 nm recombinant protein nanoparticle with a multivalent surface as a vehicle for functionalization with a model imaging agent. Multiple fluorescent probes were covalently conjugated to surface amines of crosslinked amphiphilic elastin-mimetic protein micelles using N-hydroxysuccinimide ester chemistry.
View Article and Find Full Text PDFAmphiphilic block polypeptides can self-assemble into a range of nanostructures in solution, including micelles and vesicles. Our group has recently described the capacity of recombinant amphiphilic diblock copolypeptides to form highly stable micelles. In this report, we demonstrate the utility of protein nanoparticles to serve as a vehicle for controlled drug delivery.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2011
Objective: Therapeutic hypothermia is successfully used, for example, in cardiac surgery to protect organs from ischemia. Cardiosurgical procedures, especially in combination with extracorporeal circulation, and hypothermia itself are potentially prothrombotic. Despite the obvious need, the long half-life of antiplatelet drugs and thus the risk of postoperative bleedings have restricted their use in cardiac surgery.
View Article and Find Full Text PDFAdv Drug Deliv Rev
December 2010
Biomaterials derived from protein-based block copolymers are increasingly investigated for potential application in medicine. In particular, recombinant elastin block copolymers provide significant opportunities to modulate material microstructure and can be processed in various forms, including particles, films, gels, and fiber networks. As a consequence, biological and mechanical responses of elastin-based biomaterials are tunable through precise control of block size and amino acid sequence.
View Article and Find Full Text PDFStereoelectronic effects have been identified as contributing factors to the conformational stability of collagen-mimetic peptide sequences. To assess the relevance of these factors within other protein structural contexts, three polypeptide sequences were prepared in which the sequences were derived from the canonical repeat unit (Val-Pro-Gly-Val-Gly) of the protein material elastin. These elastin-mimetic polypeptides, elastin-1, elastin-2, and elastin-3, incorporate (2S)-proline, (2S,4S)-4-fluoroproline, and (2S,4R)-4-fluoroproline, respectively, at the second position of the elastin repeat.
View Article and Find Full Text PDFA set of Escherichia coli expression strains have been defined that are competent for the incorporation of a structurally diverse series of proline analogues under culture conditions that are compatible with high levels of analogue substitution within a proline-rich protein substrate. These bacterial strains have been employed to assay the efficacy of incorporation of noncanonical amino acids into a recombinant-protein test substrate and to create variant polypeptides in which native protein sequences have been globally substituted with imino acid analogues in response to proline codons. We envision that these methods may be used to interrogate the effect of imino acid substitution on protein structure and function and may be particularly informative in the context of structural comparison of a series of modified proteins with respect to the stereoelectronic differences between the incorporated proline analogues.
View Article and Find Full Text PDF