In nuclear medicine, obtaining information on the exact location, size, and dose of radiopharmaceuticals distributed on lesions is critically important. Therefore, we have fabricated a novel fiber-optic gamma endoscope (FOGE) to measure the shape and size of the radioisotope as well as the gamma-ray distribution simultaneously. To evaluate the performance of the novel FOGE, we obtained optical images and gamma images by using a USAF 1951 target and radioisotope sources, respectively.
View Article and Find Full Text PDFSensors (Basel)
November 2015
In this study, prototype ultra-thin fiber-optic dosimeters were fabricated using organic scintillators, wavelength shifting fibers, and plastic optical fibers. The sensor probes of the ultra-thin fiber-optic dosimeters consisted of very thin organic scintillators with thicknesses of 100, 150 and 200 μm. These types of sensors cannot only be used to measure skin or surface doses but also provide depth dose measurements with high spatial resolution.
View Article and Find Full Text PDFWe developed a multichannel all-in-one phantom dosimeter system composed of nine sensing probes, a chest phantom, an image intensifier, and a complementary metal-oxide semiconductor (CMOS) image sensor to measure the dose distribution of an X-ray beam used in radiation diagnosis. Nine sensing probes of the phantom dosimeter were fabricated identically by connecting a plastic scintillating fiber (PSF) to a plastic optical fiber (POF). To measure the planar dose distribution on a chest phantom according to exposure parameters used in clinical practice, we divided the top of the chest phantom into nine equal parts virtually and then installed the nine sensing probes at each center of the nine equal parts on the top of the chest phantom as measuring points.
View Article and Find Full Text PDFWe fabricated a small-sized, flexible, and insertable fiber-optic radiation sensor (FORS) that is composed of a sensing probe, a plastic optical fiber (POF), a photomultiplier tube (PMT)-amplifier system, and a multichannel analyzer (MCA) to obtain the energy spectra of radioactive isotopes. As an inorganic scintillator for gamma-ray spectroscopy, a cerium-doped lutetium yttrium orthosilicate (LYSO:Ce) crystal was used and two solid-disc type radioactive isotopes with the same dimensions, cesium-137 (Cs-137) and cobalt-60 (Co-60), were used as gamma-ray emitters. We first determined the length of the LYSO:Ce crystal considering the absorption of charged particle energy and measured the gamma-ray energy spectra using the FORS.
View Article and Find Full Text PDFIn this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker.
View Article and Find Full Text PDFA fiber-optic sensor system using a multiplexed array of sensing probes based on an aqueous solution of sodium chloride (NaCl solution) and an optical time-domain reflectometer (OTDR) for simultaneous measurement of temperature and water level is proposed. By changing the temperature, the refractive index of the NaCl solution is varied and Fresnel reflection arising at the interface between the distal end of optical fiber and the NaCl solution is then also changed. We measured the modified optical power of the light reflected from the sensing probe using a portable OTDR device and also obtained the relationship between the temperature of water and the optical power.
View Article and Find Full Text PDFIn this study, a wavelength shifting fiber that shifts ultra-violet and blue light to green light was employed as a sensor probe of a fiber-optic Cerenkov radiation sensor. In order to characterize Cerenkov radiation generated in the developed wavelength shifting fiber and a plastic optical fiber, spectra and intensities of Cerenkov radiation were measured with a spectrometer. The spectral peaks of light outputs from the wavelength shifting fiber and the plastic optical fiber were measured at wavelengths of 500 and 510 nm, respectively, and the intensity of transmitted light output of the wavelength shifting fiber was 22.
View Article and Find Full Text PDFA miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography.
View Article and Find Full Text PDFFor real-time dosimetry in electron beam therapy, an integrated fiber-optic dosimeter (FOD) is developed using a water-equivalent dosimeter probe, four transmitting optical fibers, and a multichannel light-measuring device. The dosimeter probe is composed of two inner sensors, a scintillation sensor and a Cerenkov sensor, and each sensor has two different channels. Accordingly, we measured four separate light signals from each channel in the dosimeter probe, simultaneously, and then obtained the scintillation and Cerenkov signals using a subtraction method.
View Article and Find Full Text PDFIn this research, we propose a novel method for detecting thermal neutrons with a fiber-optic radiation sensor using the Cerenkov effect. We fabricate a fiber-optic radiation sensor that detects thermal neutrons with a Gd-foil, a rutile crystal, and a plastic optical fiber. The relationship between the fluxes of electrons inducing Cerenkov radiation in the sensor probe of the fiber-optic radiation sensor and thermal neutron fluxes is determined using the Monte Carlo N-particle transport code simulations.
View Article and Find Full Text PDFAppl Radiat Isot
November 2013
We fabricated a novel fiber-optic Cerenkov radiation sensor using a Cerenkov radiator for measuring beta-particles. Instead of employing a scintillator, transparent liquids having various refractive indices were used as a Cerenkov radiator to serve as a sensing material. The experimental results showed that the amount of Cerenkov radiation due to the interaction with beta-particles increased as the refractive index of the Cerenkov radiator was increased as a results of a decrease of the Cerenkov threshold energy for electrons.
View Article and Find Full Text PDFA Cerenkov fiber-optic dosimeter (CFOD) is fabricated using plastic optical fibers to measure Cerenkov radiation induced by a therapeutic photon beam. We measured the Cerenkov radiation generated in optical fibers in various irradiation conditions to evaluate the usability of Cerenkov radiation for a photon beam therapy dosimetry. As a results, the spectral peak of Cerenkov radiation was measured at a wavelength of 515 nm, and the intensity of Cerenkov radiation increased linearly with increasing irradiated length of the optical fiber.
View Article and Find Full Text PDFIn this study, we fabricated a one-dimensional scintillating fiber-optic dosimeter, which consists of 9 scintillating fiber-optic dosimeters, septa, and PMMA blocks for measuring surface and percentage depth doses of a therapeutic photon beam. Each dosimeter embedded in the 1-D scintillating fiber-optic dosimeter is composed of square type organic scintillators and plastic optical fibers. Also black PVC films are used as septa to minimize cross-talk between the scintillating fiber-optic dosimeters.
View Article and Find Full Text PDFA T-shaped fiber-optic phantom-dosimeter system was developed using square scintillating optical fibers, a lens system, and a CMOS image camera. Images of scintillating light were used to simultaneously measure the transverse and longitudinal distributions of absorbed dose of a 6 MV photon beam with field sizes of 1 × 1 and 3 × 3 cm(2). Each optical fiber has a very small sensitive volume and the sensitive material is water equivalent.
View Article and Find Full Text PDFIn proton therapy dosimetry, a fiber-optic radiation sensor incorporating a scintillator must undergo complicated correction processes due to the quenching effect of the scintillator. To overcome the drawbacks of the fiber-optic radiation sensor, we proposed an innovative method using the Cerenkov radiation generated in plastic optical fibers. In this study, we fabricated a fiber-optic Cerenkov radiation sensor without an organic scintillator to measure Cerenkov radiation induced by therapeutic proton beams.
View Article and Find Full Text PDFA 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured.
View Article and Find Full Text PDFIn this study, we fabricated a scintillating fiber-optic dosimeter, which consists of an organic scintillator and a plastic optical fiber, for radiotherapy dosimetry. To select an adequate kind and length of scintillator for γ-rays generated from a Co-60 source, scintillating light from various kinds and lengths of organic scintillators is measured. Using a scintillating fiber-optic dosimeter, the γ-rays generated from a Co-60 therapy unit are measured and relative doses are obtained according to the field size of the γ-ray beam and the depth in a water phantom.
View Article and Find Full Text PDF