Publications by authors named "Woojoo Song"

Objective: To investigate the feasibility of a public health center-based aerobic and resistance training program for primary prevention of cardiovascular disease in people with visual, auditory, or physical/brain impairments.

Methods: The study included 25 adults aged >40 years who lived in Cheorwon-gun in South Korea, had a disability registered for visual, auditory, or physical/brain impairments under the Disability Welfare Act, and had either known cardiovascular disease or two or more risk factors for cardiovascular disease. The program comprised four education sessions and 12 weeks of customized aerobic and strengthening exercises performed twice a week at moderate intensity, with each exercise session lasting for 1 hour.

View Article and Find Full Text PDF

DYRK1A is important in neuronal development and function, and its excessive activity is considered a significant pathogenic factor in Down syndrome and Alzheimer's disease. Thus, inhibition of DYRK1A has been suggested to be a new strategy to modify the disease. Very few compounds, however, have been reported to act as inhibitors, and their potential clinical uses require further evaluation.

View Article and Find Full Text PDF

The activity of beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is elevated during aging and in sporadic Alzheimer's disease (AD), but the underlying mechanisms of this change are not well understood. p25/Cyclin-dependent kinase 5 (Cdk5) has been implicated in the pathogenesis of several neurodegenerative diseases, including AD. Here, we describe a potential mechanism by which BACE activity is increased in AD brains.

View Article and Find Full Text PDF

Glycogen synthase kinase 3β (GSK3β) participates in many cellular processes, and its dysregulation has been implicated in a wide range of diseases such as obesity, type 2 diabetes, cancer, and Alzheimer disease. Inactivation of GSK3β by phosphorylation at specific residues is a primary mechanism by which this constitutively active kinase is controlled. However, the regulatory mechanism of GSK3β is not fully understood.

View Article and Find Full Text PDF

The mechanisms underlying aggregate formation in age-related neurodegenerative diseases remain not well understood. Here we investigated whether dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) is involved in the formation of regulator of calcineurin 1 (RCAN1) aggregates. We show that RCAN1 self-associates and forms multimers, and that this process is promoted by the Dyrk1A-mediated phosphorylation of RCAN1 at the Thr(192) residue.

View Article and Find Full Text PDF

Feeding behavior is one of the most essential activities in animals, which is tightly regulated by neuroendocrine factors. Drosophila melanogaster short neuropeptide F (sNPF) and the mammalian functional homolog neuropeptide Y (NPY) regulate food intake. Understanding the molecular mechanism of sNPF and NPY signaling is critical to elucidate feeding regulation.

View Article and Find Full Text PDF

Dual-specificity tyrosine(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) is a protein kinase that might be responsible for mental retardation and early onset of Alzheimer's disease in Down's syndrome patients. Dyrk1A plays a role in many cellular pathways through phosphorylation of diverse substrate proteins; however, its role in synaptic vesicle exocytosis is poorly understood. Munc18-1, a central regulator of neurotransmitter release, interacts with Syntaxin 1 and X11α.

View Article and Find Full Text PDF

Neural Wiskott-Aldrich syndrome protein (N-WASP) is involved in tight regulation of actin polymerization and dynamics. N-WASP activity is regulated by intramolecular interaction, binding to small GTPases and tyrosine phosphorylation. Here, we report on a novel regulatory mechanism; we demonstrate that N-WASP interacts with dual-specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A).

View Article and Find Full Text PDF

Two genes on chromosome 21, namely dual specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) and regulator of calcineurin 1 (RCAN1), have been implicated in some of the phenotypic characteristics of Down syndrome, including the early onset of Alzheimer disease. Although a link between Dyrk1A and RCAN1 and the nuclear factor of activated T cells (NFAT) pathway has been reported, it remains unclear whether Dyrk1A directly interacts with RCAN1. In the present study, Dyrk1A is shown to directly interact with and phosphorylate RCAN1 at Ser(112) and Thr(192) residues.

View Article and Find Full Text PDF

Trisomy 21-linked Dyrk1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) overexpression is implicated in pathogenic mechanisms underlying mental retardation in Down syndrome (DS). It is known to phosphorylate multiple substrates including endocytic proteins in vitro, but the functional consequence of Dyrk1A-mediated phosphorylation on endocytosis has never been investigated. Here, we show that overexpression of Dyrk1A causes defects in clathrin-mediated endocytosis and specifically, in the recruitment of endocytic proteins to clathrin-coated pits in fibroblasts.

View Article and Find Full Text PDF

Down syndrome (DS) is associated with many neural defects, including reduced brain size and impaired neuronal proliferation, highly contributing to the mental retardation. Those typical characteristics of DS are closely associated with a specific gene group "Down syndrome critical region" (DSCR) on human chromosome 21. Here we investigated the molecular mechanisms underlying impaired neuronal proliferation in DS and, more specifically, a regulatory role for dual-specificity tyrosine-(Y) phosphorylation-regulated kinase 1A (Dyrk1A), a DSCR gene product, in embryonic neuronal cell proliferation.

View Article and Find Full Text PDF

The dual-specificity tyrosine(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) gene is located on human chromosome 21 and encodes a proline-directed protein kinase that might be responsible for mental retardation and early onset of Alzheimer's disease (AD) in Down syndrome (DS) patients. Presenilin 1 (PS1) is a key component of the γ-secretase complex in the generation of β-amyloid (Aβ), an important trigger protein in the pathogenesis of AD. Increased Dyrk1A expression has been reported in human AD and DS brains.

View Article and Find Full Text PDF

DYRK1A is a serine/threonine kinase that has been linked to mental retardation associated with Down syndrome. In the present report, we describe a previously unknown role for DYRK1A in bone homeostasis. The protein expression of DYRK1A increased during osteoclast differentiation.

View Article and Find Full Text PDF

Down syndrome (DS) is associated with a variety of symptoms, such as incapacitating mental retardation and neurodegeneration (i.e., Alzheimer's disease), that prevent patients from leading fully independent lives.

View Article and Find Full Text PDF

Individuals with Down syndrome (DS) suffer from mental retardation. Overexpression and the resulting increased specific activity of Dyrk1A kinase located on chromosome 21 cause a learning and memory deficit in Dyrk1A transgenic mice. To search for therapeutic agents with Dyrk1A inhibition activity, previously we obtained HCD160 as a new hit compound for Dyrk1A inhibition.

View Article and Find Full Text PDF

Most individuals with Down Syndrome (DS) show an early-onset of Alzheimer's disease (AD), which potentially results from the presence of an extra copy of a segment of chromosome 21. Located on chromosome 21 are the genes that encode beta-amyloid (Abeta) precursor protein (APP ), a key protein involved in the pathogenesis of AD, and dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A (DYRK1A ), a proline-directed protein kinase that plays a critical role in neurodevelopment. Here, we describe a potential mechanism for the regulation of AD pathology in DS brains by DYRK1A-mediated phosphorylation of APP.

View Article and Find Full Text PDF

Delta-catenin was first identified through its interaction with Presenilin-1 and has been implicated in the regulation of dendrogenesis and cognitive function. However, the molecular mechanisms by which delta-catenin promotes dendritic morphogenesis were unclear. In this study, we demonstrated delta-catenin interaction with p190RhoGEF, and the importance of Akt1-mediated phosphorylation at Thr-454 residue of delta-catenin in this interaction.

View Article and Find Full Text PDF

Most individuals with Down syndrome show early onset of Alzheimer disease (AD), resulting from the extra copy of chromosome 21. Located on this chromosome is a gene that encodes the dual specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). One of the pathological hallmarks in AD is the presence of neurofibrillary tangles (NFTs), which are insoluble deposits that consist of abnormally hyperphosphorylated Tau.

View Article and Find Full Text PDF

Mental retardation is the most common and debilitating condition for individuals with Down syndrome (DS). The hyper-activation of DYRK1A by overexpression causes significant learning and memory deficits in DS-model mice. Thus far, no mechanism-based drug has been developed to address this.

View Article and Find Full Text PDF

Among the various phenotypes seen in Down syndrome (DS), mental retardation is the most common and most debilitating condition suffered by individuals with DS. The DYRK1A gene on human chromosome 21q22.2 encodes a subfamily of protein kinases that displays dual substrate specificities and is known to play a critical role in neurodevelopment.

View Article and Find Full Text PDF

Dual-specificity tyrosine(Y) regulated kinase 1A (DYRK1A) is a serine/threonine protein kinase implicated in mental retardation resulting from Down syndrome. In this study, we carried out yeast two-hybrid screening to find proteins regulating DYRK1A kinase activity. We identified 14-3-3 as a Dyrk1A interacting protein, which is consistent with the previous finding of the interaction between the yeast orthologues Yak1p and Bmh1/2p.

View Article and Find Full Text PDF