Publications by authors named "Woojin Hong"

Crop price forecasting is difficult in that supply is not as elastic as demand, therefore, supply and demand should be stabilized through long-term forecasting and pre-response to the price. In this study, we propose a Parametric Seasonal-Trend Autoregressive Neural Network (PaSTANet), which is a hybrid model that includes both a multi-kernel residual convolution neural network model and a Gaussian seasonality-trend model. To compare the performance of the PaSTANet, we used daily data from the Garak market for four crops: onion, radish, Chinese cabbage, and green onion, and performed long-term price forecasts for one year in 2023.

View Article and Find Full Text PDF