While the average value measurement approach can successfully analyze and predict the general behavior and biophysical properties of an isogenic cell population, it fails when significant differences among individual cells are generated in the population by intracellular changes such as the cell cycle, or different cellular responses to certain stimuli. Detecting such single-cell differences in a cell population has remained elusive. Here, we describe an easy-to-implement and generalizable platform that measures the dielectrophoretic cross-over frequency of individual cells by decreasing measurement noise with a stochastic method and computing ensemble average statistics.
View Article and Find Full Text PDFThe current study focused on the monitoring of pollution loads in the Kalpakkam coastal zone of India in terms of physico-chemical characteristics of sediment. The investigation took place at 12 sampling points around the Kalpakkam coastal zone for one year beginning from 2019. The seasonal change of nutrients in the sediment, such as nitrogen, phosphorus, potassium, total organic carbon, and particles size distribution, was calculated.
View Article and Find Full Text PDFFormed by aberrant cell division, minicells possess functional metabolism despite their inability to grow and divide. Minicells exhibit not only superior stability when compared with bacterial cells but also exceptional tolerance-characteristics that are essential for a de novo bioreactor platform. Accordingly, we engineered minicells to accumulate protein, ensuring sufficient production capability.
View Article and Find Full Text PDFProgress in sorting, separating, and characterizing ever smaller amounts of chemical and biological material depends on the availability of methods for the controlled interaction with nanoscale and molecular-size objects. Here, we report on the reversible, tunable trapping of single DNA molecules and other charged micro- and nanoparticles in aqueous solution using a direct-current (DC) corral trap setup. The trap consists of a circular, non-conductive void in a metal-coated surface that, when charged, generates an electrostatic potential well in the proximate solution.
View Article and Find Full Text PDFLabel-free dielectrophoretic force-based surface charge detection has shown great potential for highly sensitive and selective sensing of metal ions and small biomolecules. However, this method suffers from a complex calibration process and measurement signal interference in simultaneous multi-analyte detection, thus creating difficulties in multiplex detection. We have developed a method to overcome these issues based on the optical discrimination of the dielectrophoretic behaviors of multiple microparticle probes considering the surface charge difference before and after self-assembling conjugation.
View Article and Find Full Text PDFDielectrophoresis, an electrokinetic technique, can be used for contactless manipulation of micro- and nano-size particles suspended in a fluid. We present a 3-D microfluidic DEP device with an orthogonal electrode configuration that uses negative dielectrophoresis to trap spherical polystyrene micro-particles. Traps with three different basic geometric shapes, i.
View Article and Find Full Text PDFFormate is a promising environmentally friendly and sustainable feedstock synthesized from syngas or carbon dioxide. Methylorubrum extorquens is a type II methylotroph that can use formate as a carbon source. It accumulates polyhydroxyalkanoates (PHAs) inside the cell, mainly producing poly-3-hydroxybutyrate (PHB), a degradable biopolymer.
View Article and Find Full Text PDFDielectrophoresis is a robust approach for the manipulation and separation of (bio)particles using microfluidic platforms. We developed a dielectrophoretic corral trap in a microfluidic device that utilizes negative dielectrophoresis to capture single spherical polystyrene particles. Circular-shaped micron-size traps were employed inside the device and the three-dimensional trap stiffness (restoring trapping force from equilibrium trapping location) was analyzed using 4.
View Article and Find Full Text PDFInvestigation of the dielectric properties of cell membranes plays an important role in understanding the biological activities that sustain cellular life and realize cellular functionalities. Herein, the variable dielectric polarization characteristics of cell membranes are reported. In controlling the dielectric polarization of a cell using dielectrophoresis force spectroscopy, different cellular crossover frequencies were observed by modulating both the direction and sweep rate of the frequency.
View Article and Find Full Text PDFTemperature increases during dielectrophoresis (DEP) can affect the response of biological entities, and ignoring the effect can result in misleading analysis. The heating mechanism of a DEP device is typically considered to be the result of Joule heating and is overlooked without an appropriate analysis. Our experiment and analysis indicate that the heating mechanism is due to the dielectric loss (Debye relaxation).
View Article and Find Full Text PDFIntracellular delivery of functional molecules such as proteins, transcription factors and DNA is effective and promising in cell biology. However, existing transfection methods are often unsuitable to deliver big molecules into cells or require carriers such as viruses and peptides specific to the target molecules. In addition, the nature of bulk processing does not generally provide accurate dose control of individual cells.
View Article and Find Full Text PDFThe detection of body fluids has been used to identify a suspect and build a criminal case. As the amount of evidence collected at a crime site is limited, a multiplex identification system for body fluids using a small amount of sample is required. In this study, we proposed a multiplex detection platform using an Ag vertical nanorod metal enhanced fluorescence (MEF) substrate for semen and vaginal fluid (VF), which are important evidence in cases of sexual crime.
View Article and Find Full Text PDFWe reported an automated dielectrophoretic (DEP) tweezers-based force spectroscopy system to examine intermolecular weak binding interactions, which consists of three components: (1) interdigitated electrodes and micro-sized polystyrene particles used as DEP tweezers and probes inside a microfluidic device, along with an arbitrary function generator connected to a high voltage amplifier; (2) microscopy hooked up to a high-speed charge coupled device (CCD) camera with an image acquisition device; and (3) a computer aid control system based on the LabVIEW program. Using this automated system, we verified the measurement reliability by measuring intermolecular weak binding interactions, such as hydrogen bonds and Van der Waals interactions. In addition, we also observed the linearity of the force loading rates, which is applied to the probes by the DEP tweezers, by varying the number of voltage increment steps and thus affecting the linearity of the force loading rates.
View Article and Find Full Text PDFPurpose: We aimed to evaluate the difference in fluorodeoxyglucose (FDG) uptake in sedated healthy subjects after they underwent esophagogastroduodenoscopy (EGD) and colonoscopy procedures.
Methods: The endoscopy group ( = 29) included healthy subjects who underwent screening via F-18 FDG positron emission tomography/computed tomography (PET/CT) after an EGD and/or colonoscopy under sedation on the same day. The control group ( = 35) included healthy subjects who underwent screening via PET/CT only.
Understanding the interactions between proteins and nanoparticles (NPs) along with the underlying structural and dynamic information is of utmost importance to exploit nanotechnology for biomedical applications. Upon adsorption onto a NP surface, proteins form a well-organized layer, termed the corona, that dictates the identity of the NP-protein complex and governs its biological pathways. Given its high biological relevance, in-depth molecular investigations and applications of NPs-protein corona complexes are still scarce, especially since different proteins form unique corona patterns, making identification of the biomolecular motifs at the interface critical.
View Article and Find Full Text PDFWe present our effort in implementing a fluorescence laminar optical tomography scanner which is specifically designed for noninvasive three-dimensional imaging of fluorescence proteins in the brains of small rodents. A laser beam, after passing through a cylindrical lens, scans the brain tissue from the surface while the emission signal is captured by the epi-fluorescence optics and is recorded using an electron multiplication CCD sensor. Image reconstruction algorithms are developed based on Monte Carlo simulation to model light–tissue interaction and generate the sensitivity matrices.
View Article and Find Full Text PDFA facile, controllable, inexpensive and green electrochemical synthesis of IrO2-graphene nanohybrid thin films is developed to fabricate an easy-to-use integrated paper microfluidic electrochemical pH sensor for resource-limited settings. Taking advantages from both pH meters and strips, the pH sensing platform is composed of hydrophobic barrier-patterned paper micropad (µPAD) using polydimethylsiloxane (PDMS), screen-printed electrode (SPE) modified with IrO2-graphene films and molded acrylonitrile butadiene styrene (ABS) plastic holder. Repetitive cathodic potential cycling was employed for graphene oxide (GO) reduction which can completely remove electrochemically unstable oxygenated groups and generate a 2D defect-free homogeneous graphene thin film with excellent stability and electronic properties.
View Article and Find Full Text PDFThe liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge.
View Article and Find Full Text PDFThe direct quantification of weak intermolecular binding interactions is very important for many applications in biology and medicine. Techniques that can be used to investigate such interactions under a controlled environment, while varying different parameters such as loading rate, pulling direction, rupture event measurements, and the use of different functionalized probes, are still lacking. Herein, we demonstrate a biaxial dielectrophoresis force spectroscopy (BDFS) method that can be used to investigate weak unbinding events in a high-throughput manner under controlled environments and by varying the pulling direction (i.
View Article and Find Full Text PDFBackground: Translation of nucleotides into a numeric form has been approached in many ways and has allowed researchers to investigate the properties of protein-coding sequences and noncoding sequences. Typically, more pronounced long-range correlations and increased regularity were found in intron-containing genes and in non-transcribed regulatory DNA sequences, compared to cDNA sequences or intron-less genes. The regularity is assessed by spectral tools defined on numerical translates.
View Article and Find Full Text PDFWe synthesized cysteine-functionalized graphene oxide (sGO) using carbonyldiimidazole as a cross-linker via amide and carbamate linkages. The sGO/polypyrrole (PPy) nanocomposite film was grown on the working electrode surface of a screen-printed electrode (SPE) via controlled one-step electrochemical deposition. The sGO/PPy-SPE was used to detect lead ions (Pb(2+)) in water by first depositing Pb(2+) on the working electrode surface for 10 min at -1.
View Article and Find Full Text PDFQuantitative detection of the biological properties of living cells is essential for a wide range of purposes, from the understanding of cellular characteristics to the development of novel drugs in nanomedicine. Here, we demonstrate that analysis of cell biological properties within a microfluidic dielectrophoresis device enables quantitative detection of cellular biological properties and simultaneously allows large-scale measurement in a noise-robust and probeless manner. Applying this technique, the static and dynamic biological responses of live B16F10 melanoma cells to the small-molecule drugs such as N-ethylmaleimide (NEM) and [(dihydronindenyl)oxy]alkanoic acid (DIOA) were quantitatively and statistically examined by investigating changes in movement of the cells.
View Article and Find Full Text PDFA microfabricated calorimeter (μ-calorimeter) with an enclosed reaction chamber is presented. The 3D micromachined reaction chamber is capable of analyzing liquid samples with volume of 200 nl. The thin film low-stress silicon nitride membrane is used to reduce thermal mass of the calorimeter and increase the sensitivity of system.
View Article and Find Full Text PDFWith the increasing use of meta-analysis, duplicate publication of original research is particularly problematic. Duplicate publication can result in an inappropriate weighting of the study results. The purpose of our study was to assess the incidence and characteristics of duplicate publications in Korea, and to estimate the impact of duplicate publication on meta-analyses.
View Article and Find Full Text PDF