Objective: Despite the effective application of deep learning (DL) in brain-computer interface (BCI) systems, the successful execution of this technique, especially for inter-subject classification, in cognitive BCI has not been accomplished yet. In this paper, we propose a framework based on the deep convolutional neural network (CNN) to detect the attentive mental state from single-channel raw electroencephalography (EEG) data.
Approach: We develop an end-to-end deep CNN to decode the attentional information from an EEG time series.
Annu Int Conf IEEE Eng Med Biol Soc
July 2017
Measuring attention from electroencephalogram (EEG) has found applications in the treatment of Attention Deficit Hyperactivity Disorder (ADHD). It is of great interest to understand what features in EEG are most representative of attention. Intensive research has been done in the past and it has been proven that frequency band powers and their ratios are effective features in detecting attention.
View Article and Find Full Text PDFComput Med Imaging Graph
March 2015
This paper presents an optimal model integration framework to robustly localize the optic cup in fundus images for glaucoma detection. This work is based on the existing superpixel classification approach and makes two major contributions. First, it addresses the issues of classification performance variations due to repeated random selection of training samples, and offers a better localization solution.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
June 2012
This paper proposes a neural network structure for spatio-temporal learning and recognition inspired by the long-term memory (LTM) model of the human cortex. Our structure is able to process real-valued and multidimensional sequences. This capability is attained by addressing three critical problems in sequential learning, namely the error tolerance, the significance of sequence elements and memory forgetting.
View Article and Find Full Text PDF