There has been much interest in integrating various inorganic nanoparticles (nanoscale colloids) in biology and medicine. However, buildup of a protein corona around the nanoparticles in biological media, driven by nonspecific interactions, remains a major hurdle for the translation of nanomedicine into clinical applications. In this study, we investigate the interactions between gold nanoparticles and serum proteins using a series of dihydrolipoic acid (DHLA)-based ligands.
View Article and Find Full Text PDFNonspecific interactions in biological media can lead to the formation of a protein corona around nanocolloids, which tends to alter their behavior and limit their effectiveness when used as probes for imaging or sensing applications. Yet, understanding the corona buildup has been challenging. We hereby investigate these interactions using luminescent quantum dots (QDs) as a model nanocolloid system, where we carefully vary the nature of the hydrophilic block in the surface coating, while maintaining the same dihydrolipoic acid (DHLA) bidentate coordinating motif.
View Article and Find Full Text PDFWe have combined optical absorption with the Ellman's test to identify the parameters that affect the transformation of the 5-membered dithiolanes to thiols in lipoic acid (LA) and its derivatives during UV-irradiation. We found that the nature and polarity of the solvent, the structure of the ligands, acidity of the medium and oxygen can drastically affect the amount of photogenerated thiols. These findings are highly relevant to the understanding of the photochemical transformation of this biologically relevant compound, and would benefit the increasing use of LA-based ligands for the surface functionalization of various nanomaterials.
View Article and Find Full Text PDF